Затем через алгоритм определяется количество «угловых» портфелей, которые связаны с ценными бумагами и полностью описывают эффективное множество. «Угловой» портфель – это эффективный портфель, обладающий следующими свойствами: любая комбинация двух смежных «угловых» портфелей представляет из себя третий портфель, лежащий в эффективном множестве между двумя «угловыми» портфелями (портфели, представляющие комбинацию двух несмежных «угловых» портфелей, не будут принадлежать эффективному множеству). Продолжая в том же духе, можно построить несколько десятков эффективных портфелей между вторым и третьим «угловыми» портфелями, а затем соответствующий сегмент эффективного множества. После того как данная процедура будет выполнена для следующего промежутка между третьим и четвертым «угловыми портфелями, график будет полностью построен.
После того как были определены структура и местоположение эффективного множества Марковица, можно определить состав оптимального портфеля инвестора. Процедура определения состава оптимального портфеля начинается с графического определения инвестором уровня его ожидаемой доходности. То есть из графика инвестор может определить, где располагается портфель, соответствующий точке касания кривых безразличия инвестора с эффективным множеством (О), а затем с помощью линейки отметить его ожидаемую доходность (провести из точки О линию, перпендикулярную вертикальной оси).
Проведя данную операцию, инвестор теперь может определить два «угловых» портфеля с ожидаемыми доходностями, «окружающими» данный уровень. То есть инвестор может определить «угловой» портфель, который имеет ближайшую ожидаемую доходность, большую, чем у данного портфеля (ближайший «угловой» портфель, расположенный «выше» О), и «угловой» портфель с ближайшей, меньшей ожидаемой доходностью (ближайший «угловой» портфель, расположенный «ниже» О). Если ожидаемая доходность оптимального портфеля обозначена как
Оптимальный портфель будет состоять из доли Y, инвестированной в ближайший «угловой» портфель, находящийся «выше» оптимального, и доли 1 – Y, инвестированной в ближайший «угловой» портфель, расположенный «ниже» оптимального.
Если векторы весов ближайших верхних и нижних «угловых» портфелей обозначены Xa и Xb соответственно, то веса отдельных ценных бумаг, составляющих оптимальный портфель, равняются
53. Модель оценки капитальных активов (Модель Шарпа)
Ожидаемую доходность актива можно определить с помощью так называемых индексных моделей. Их суть состоит в том, что изменение доходности и цены актива зависят от ряда показателей, характеризующих состояние рынка, или индексов. Простая индексная модель предложена У.Шарпом в середине 60-х гг. Ее часто называют рыночной моделью. В модели Шарпа представлена зависимость между ожидаемой доходностью актива и ожидаемой доходностью рынка. Она предполагается линейной. Уравнение модели имеет следующий вид:
где: Е(ri) – ожидаемая доходность актива;
yi – доходность актива в отсутствие воздействия на него рыночных факторов;
βi – коэффициент β актива;
E(rm) – ожидаемая доходность рыночного портфеля;
εi – независимая случайная (переменная) ошибка: она показывает специфический риск актива, который нельзя объяснить действием рыночных сил. Значение ее средней величины равно нулю. Она имеет постоянную дисперсию ковариацию с доходностью рынка, равную нулю; ковариацию с нерыночным компонентом доходности других активов равную нулю. Приведенное уравнение является уравнением регрессии. Если его применить к широко диверсифицированному портфелю, то значения случайных переменных (εi) в силу того, что они изменяются как в положительном, так и отрицательном направлении, гасят друг друга, и величина случайной переменной для портфеля в целом стремится к нулю. Поэтому для широко диверсифицированного портфеля специфическим риском можно пренебречь. Тогда модель Шарпа принимает следующий вид:
где: E(rp) – ожидаемая доходность портфеля;
βp – β портфеля;
yp – доходность портфеля в отсутствие воздействия на него рыночных факторов.
54. Стратегии управления портфелем. Мониторинг инвестиционного портфеля
В управлении портфелем можно выделить две основные стратегии: пассивную и активную.