Читаем Ипотека и уравнения полностью

В его модели цены предложения и спроса описывались посредством взаимосвязанных уравнений с тремя переменными: ценой, величиной спроса и величиной предложения. Требовалось вычислить значения двух неизвестных: стоимости и объема, так как при рыночном равновесии величина спроса должна равняться величине предложения. Вальрас был первым, кто описал общее экономическое равновесие, связав спрос и предложение, на языке математики.

Несмотря на столь важные открытия, идея о том, что для политической экономии вполне пригоден язык математики, с ее функциями, уравнениями и анализом бесконечно малых, вызвала серьезную критику со стороны других великих экономистов XIX столетия. Многие из них использовали исторический анализ и считали абсурдной саму идею — выражать человеческую предприимчивость на языке чисел и математических формул. Сходились с ними и сами математики, ссылавшиеся на то, что использование в экономике математических методов позволило получить весьма немногочисленные результаты. Итогом многолетнего сотрудничества экономистов и математиков стала лишь система уравнений, описывающих равновесие Вальраса.

Большой шаг вперед в изучении ценообразования сделал Пьеро Сраффа, ученик английского ученого Джона Мейнарда Кейнса. В своей книге «Производство товаров посредством товаров» он предложил следующее уравнение:

Р = S ВR,

в котором уравновешены цена (Р) и переменные зарплата (S), прибыль (В) и рента (R).

Политическая арифметика, или Рождение статистики

В 1642 году молодой французский математик Блез Паскаль изобрел «Паскалину» — первую вычислительную машину с зубчатым механизмом. Машина могла складывать и вычитать любые числа, количество разрядов в которых не превышало восьми.

С помощью своего изобретения Паскаль хотел облегчить труд отца — налогового инспектора. Всего было изготовлено около пятидесяти «Паскалин».

Слева — «Паскалина», справа — вычислительная машина, изобретенная Лейбницем.

В 1694 году Готфрид Вильгельм Лейбниц на основе «Паскалины» создал машину, способную выполнять умножение и деление. Швейцарский математик Якоб Бернулли в 1705 году в книге «Искусство предположений» изложил зачатки теории вероятностей. Он показал, что с ростом числа наблюдений неопределенность уменьшается, и описал такой идеальный эксперимент: «В урне находится 3000 черных шариков и 2000 белых. Если мы будем извлекать шарики из урны, записывать их цвет и опускать их обратно в урну, то убедимся, что с ростом числа наблюдений соотношение белых и черных шариков будет все ближе к 2/3». Сегодня это утверждение известно как закон больших чисел — одна из основ математической статистики.

Антуан Лавуазье, создавший современную систему химических обозначений и формул, использовал свои знания в области вычислений и измерений в администрировании. Он участвовал в работе комиссии по десятичной метрической системе и в 1791 году создал «Краткое изложение различных работ по политической арифметике». Его труд решал насущные для Французской республики задачи, ведь в ту эпоху налоги взимались в зависимости от стоимости имущества, размеров обрабатываемой земли и поголовья скота.

Лавуазье попытался вычислить общую площадь всей обрабатываемой земли во Франции. Для этого он собрал данные о ежегодном потреблении пищи и алкоголя в городах и деревнях и подсчитал, сколько земли необходимо для производства всех этих продуктов. Благодаря Лавуазье известно, что в 1790 году во Франции насчитывалось 25 миллионов жителей, из которых восемь жили в городах, а еще восемь занимались виноградарством. Лавуазье призывал создать учреждение, которое регулярно собирало бы статистические данные о сельском хозяйстве, торговле, численности и составе населения. Ученый был так убежден в возможностях статистики, что полагал: скоро она заменит политическую экономию.

Другой работой, важной для появления статистики, стал «Опыт закона о народонаселении» Томаса Мальтуса. Этот труд, написанный в конце XVIII века, оказал огромное влияние на многих социологов и экономистов. Мальтус отмечал, что производство продуктов питания растет в арифметической прогрессии (1, 2, 3, 4, …), а численность населения — в геометрической (1, 2, 4, 8, …), при этом площадь земли, пригодной для возделывания, ограничена, и производительность труда на ней снижается. Так как население с определенной периодичностью удваивается, мир словно делится снова и снова пополам, и каждый раз для удовлетворения потребностей остается все меньше ресурсов. Наступит момент, когда их окажется недостаточно, и тогда возрастет смертность или же оплата труда установится на минимальном уровне, достаточном для выживания.

В 1799 году было опубликовано объемное «Статистическое описание Шотландии 1791–1799», в 21 томе которого сэр Джон Синклер собрал множество статистических данных, взятых из церковных книг, приводил годовые суммы доходов и расходов домохозяйств и виды деятельности, служившие источниками доходов.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука