У всех этих и у многих других подобных роботов «разумное поведение» создавалось благодаря командам, подаваемым со стороны. Приемные устройства, вмонтированные в механизм робота, преобразовывали сигналы управления в движения, которые со стороны казались самостоятельными и целеустремленными. На этом этапе роботы были еще не в состоянии сами вырабатывать сигналы управления, которые бы делали их в некотором смысле независимыми от прямого управления человеком.
Стремление конструкторов передать в ведение машины как можно больше производственных операций, Сохраняя за человеком неограниченную возможность изобретательства и творчества, вызвало к жизни целую науку — теорию автоматического управления и регулирования.
На первых порах эта наука ставила перед собой довольно узкую задачу — исследовать возможность создания автоматов, предназначавшихся для выполнения только определенных операций. Говоря современным языком, автоматы были строго запрограммированы, причем программа их работы была воплощена в их конструкции. Вне «круга своих обязанностей» такие автоматы ни на что больше не годились. Мы не можем потребовать от автомата, выдающего за три копейки стакан воды с сиропом, чтобы он подметал улицы! Впоследствии были созданы многооперационные автоматы, которые могли выполнять не одно, а несколько определенных действий. Но и они, будучи, по существу, роботами (конечно, более совершенными, чем часовой механизм!), не обладали самостоятельными устройствами саморегулирования. С другой стороны, наблюдая поведение живых организмов, нельзя не удивляться, как много разнообразных действий они могут совершать. Обыкновенный дождевой червяк, ползая и извиваясь, зарываясь под землю и выползая наружу, представляется несравненно более совершенным «роботом», чем все искусственно созданные автоматы» действия которых можно пересчитать по пальцам. Поразительная гибкость поведения «живых автоматов» очень скоро стала предметом пристального изучения «механизма» их действий инженерами.
В отличие от простого робота живой организм не только управляет своим поведением по однажды заданной «программе», но и изменяет его в соответствии с изменениями внешней среды. Болеэ того, на каждом этапе своей работы живой организм корректирует (свои действия и, обладая памятью, запоминает свои удачи и промахи, с тем чтобы при случае воспользоваться полученным опытом.
Изменчивость поведения в зависимости от обстановки, способность приобретать опыт, возможность самостоятельно составлять программу действий придают «живым автоматам» ту изумительную гибкость, которая всегда удивляла инженеров и к которой они стремились, размышляя над конструкциями роботов, как к заветной цели.
Понадобилось немало времени, прежде чем секрет «живого автоматизма» из тайны постепенно превратился в объект строгого научного исследования. Для этого воедино должны были быть синтезированы знания из области математики, теории автоматического управления, биологии, физиологии, психологии и других самых разнородных наук. Так появилась кибернетика.
Мы уже говорили, что «разумные» движения старых роботов создавались благодаря командам, поступавшим извне. В современных автоматах с программным управлением эти команды-сигналы записываются на специальные перфоленты и затем вводятся в блоки управления машины. В связи с этим возникает много вопросов. Какова должна быть структура сигналов-команд! В какой последовательности они должны вводиться в автомат! Как выполняться! Как контролировать их выполнение! Комплекс этих вопросов находится в компетенции кибернетики.
О кибернетике было написано достаточно много специальных и популярных статей, а ее выводы питали и продолжают питать воображение писателей-фантастов. Не вдаваясь в слишком тонкие рассуждения, к которым прибегают кибернетики, укажем лишь на некоторые выводы. Кибернетику впервые сделала сильный акцент на огромном значении для действия автоматов управляющей информации как из внешнего мира, так и из внутренних источников. Любое поведение, сходное с целесообразным, осуществляется благодаря постоянной циркуляции по нервам животного или по системам связи машины определенной, отобранной информации. У животных сигналы информации, в зависимости от своего происхождения и физической природы, по нервам отправляются в центральные разделы мозга, где они обрабатываются. Там происходит генерирование новой информации, которая отправляется к исполнительным органам — к мускулам. В машинах обработка научной информации производится специально созданным для этого устройством — его нередко называют по аналогии машинным «мозгом», — а новая информация-приказ для тех или иных действий поступает к исполнительным органам машины — к двигателям.
Логика в ее математическом варианте и теория информации являются одними из главных разделов современной кибернетики.