- Не преувеличивай моих заслуг, о Хайям! Фигурные числа - не мое открытие. Много путешествуя, я, конечно, многое и запамятовал. Но фигурные числа я, помнится, вывез из Вавилона заодно с другими математическими редкостями.
- А все-таки узнали мы о них не от вавилонян, а от тебя и от твоего последователя Никомаха, - упорствует Хайям.
- Ну, если так, - Пифагор делает приглашающий жест, - тогда позволь предоставить слово тебе. Недаром ходят слухи, что Омар Хайям тоже имеет некоторое отношение к арифметическому треугольнику.
- Разве? - усмехается тот. - Другие всегда знают о нас больше, чем мы сами. Во всяком случае, если в моей жизни и было что-нибудь подобное, то сам я об этом начисто забыл. Зато наверняка помню, что арифметический треугольник был известен в Древней Индии и в Древнем Китае. А потому предоставь лучше слово мэтру Тарталье. Надеюсь, он-то свою причастность к арифметическому треугольнику отрицать не станет.
- Ни-ни-ни в коем случае, - подает голос высокий итальянец с глубокими шрамами на подбородке, одетый по моде шестнадцатого столетия. - Хотя числа в этом треугольнике я ра-ра-расположил так, что правильнее было бы называть его прямоугольником.
- Какое, однако, удивительное совпадение! - не выдерживает Фило. "Тарталья" - по-итальянски "заика", а этот уважаемый мэтр и впрямь заикается.
- Ничего удивительного, - поясняет Асмодей. - Прозвище Тартальи сей даровитый синьор получил как раз за свое заикание, которое началось у него после сильного ранения в нижнюю челюсть.
- А настоящая его фамилия как? - продолжает приставать любопытный Фило.
Но Асмодей лишь досадливо пожимает плечами. Не всегда ж ему знать то, чего не знает никто! И вообще, дадут ему наконец смотреть передачу?
- Однако, до-до-дорогие мэтры, - продолжает Тарталья, - хочу обратить ваше внимание на то, что арифметические треугольники возникали в разные времена и в разных странах совершенно самостоятельно. Свой я, во-во-во всяком случае, придумал сам.
- И я тоже, достопочтенный мэтр Тарталья, - присоединяется Паскаль, потому что ваши изыскания были мне, к сожалению, неизвестны.
- Вы забыли сказать главное, уважаемый мэтр Паскаль - вмешивается представительный горбоносый красавец с густыми бархатными бровями и легкой любезной улыбкой в уголках рта.
- Насколько я понял, мэтр Лейбниц, вы просите слова, - строго намекает Пифагор. - Рад его вам предоставить.
Тот, извиняясь, склоняет набок голову в крутокудром каштановом парике. Достопочтенному председателю незачем затрудняться! Он, Лейбниц, хотел лишь заметить, что заслуга мэтра Паскаля не столько в том, что он открыл арифметический треугольник, сколько в том, что ему удалось вывести формулу сочетаний. Ту самую формулу, с помощью которой легко вычислить любой элемент числового треугольника.
- Прошу прощения! - живо перебивает Паскаль. - Одновременно со мной ту же формулу вывел мэтр Пьер Ферма.
- Не отрицаю! - весело басит Ферма. - И все-таки честь ознакомить собравшихся с некоторыми свойствами формулы сочетаний я предоставляю вам.
Паскаль молча кланяется и, подойдя к стоящей у камина грифельной доске, выписывает на ней две таблицы.
- Как видите, - поясняет он, - арифметический треугольник изображен здесь в двух видах: в числовом и условном, где каждый член его выражен через число сочетаний из номера строки по номеру своего места в ней. Разумеется, верхней строке и первому числу каждой строки присвоен нулевой номер. Далее обратите внимание на то, что все сочетания, у которых верхний индекс нуль, равны единице. Почему это так, понять нетрудно. Стоит только сравнить обе таблицы. Выберем, допустим, шестую строку (ее порядковый номер 5) и рассмотрим два ее числа, хотя бы 5 и 5. Одно из них в условном треугольнике обозначено как , второе - как . Но ведь числа эти равны между собой, ибо каждое из них порознь равно 5: == 5. В свою очередь можно записать как . И если это обобщить для любой строки (n) и любого порядкового числа в ней (m), то получится любопытное свойство сочетаний: (це из эн по эм равно це из эн по эн минус эм). Отсюда ясно, что так как с одной стороны = 1, а с другой , то и выходит, что . Ну, а дальше уж, для общности правила, условились и С() тоже считать единицей. Вот вам простой и удобный способ отыскивать любое, даже самое большое число сочетаний. И потому вопрос, чему равно, скажем, число сочетаний из тысячи по девятисот девяноста девяти, не должен пугать даже школьника, - вычислить это проще простого:
- За-за-замечательно! - восхищается Тарталья. - Я бы до такого ни-ни-никогда не додумался.
- Не клевещите на себя, дорогой мэтр Тарталья, - протестует Паскаль. Просто вы жили на сто лет раньше, и время формулы сочетаний еще не пришло. А теперь попрошу нашего досточтимого председателя предоставить слово мэтру Лейбницу, ибо я горю желанием узнать, что сделал с арифметическим треугольником он.
- С величайшим удовольствием! - кивает Пифагор. - Тем более что я и сам давно дожидаюсь такого случая.
Александр Иванович Куприн , Константин Дмитриевич Ушинский , Михаил Михайлович Пришвин , Николай Семенович Лесков , Сергей Тимофеевич Аксаков , Юрий Павлович Казаков
Детская литература / Проза для детей / Природа и животные / Малые литературные формы прозы: рассказы, эссе, новеллы, феерия / Внеклассное чтение