Читаем Искатели необычайных автографов или Странствия, приключения и беседы двух филоматиков полностью

— Не забудьте рассмотреть еще два частных случая первоначального треугольника, — суетливо напоминает Мате. — Когда сумма двух сторон равна третьей и когда одна из сторон равна нулю. — Он протягивает Фило и Асмодею заранее заготовленные чертежики. — Как видите, моя теорема справедлива также и для них.

— Благодарю вас, мсье! Поверьте, мне было чрезвычайно интересно! Поздравляю с удачей! — рассыпается бес, но вдруг совершенно неожиданно зевает и страшно смущается. — Пардон, мсье! Не подумайте, что это от вашей теоремы. Всему виной чай. Он всегда действует на меня, как снотворное. С вашего разрешения я вздремну немножко…

Он взлетает на верхнюю полку и скрывается в книге Лесажа, с силой захлопнув за собой картонную обложку. В ту же минуту оттуда начинает исходить легкое блаженное похрапывание: «Хрр-фью… хрр-фью…»

Филоматики растроганно переглядываются.

— Перерыв?

— Перерыв!

ВЕЧЕР ЧАЙНОГО ДНЯ

— Открываем наше вечернее заседание, — объявляет Фило, когда все они снова сидят за столом и Асмодей кулачком протирает заспанные глаза. — Что у нас на повестке… пардон, на чашке дня?

Бес молча указывает на рисунок, где три блистательных кавалера и одна изысканная дама играют в карты.

— Эпизод под названием «В великосветском салоне», — определяет Фило.

Все еще позевывая, Асмодей заглавие одобряет, считает, однако, необходимым добавить, что к этому эпизоду примыкает еще один: «Встреча на улице Сен-Мишель», связанный с ним общей темой «Теория вероятностей». Кроме того, прежде чем перейти к обсуждению, не мешает установить дату…

Мате уверенно объявляет, что разговор за карточным столом мог быть только зимой 1654 года.

— Почем вы знаете? — любопытствует Фило.

— Да потому что речь, если помните, шла о переезде Паскаля и герцога Роанне в Пор-Рояль. Отсюда следует, что интересующий нас эпизод происходил уже после обращения Паскаля, которое, как я выяснил, относится к 23 ноября 1654 года. И судя по тому, что маркиза об этом узнать не успела, разговор ее с де Мере отстоит не слишком далеко от указанной даты. Он мог состояться в конце ноября или в начале декабря.

— Мог-то мог, но вот состоялся ли? — неосторожно прорывается у Фило.

— Пф! — Асмодей возмущенно фыркает и просыпается окончательно. — Не все ли равно! Важно другое: убедительно или неубедительно? Вероятно или невероятно?

— Вероятно, вероятно! — дружно успокаивают его филоматики.

— Вот и перейдем к задачам о вероятностях, о которых так красноречиво рассказывал шевалье де Мере, — ловко поворачивает разговор черт. — Начнем, как полагается, с начала, то есть с первой задачи. Суть ее такова: двое играют в кости, бросая по два кубика сразу. Первый ставит на то, что хотя бы один раз выпадут две шестерки одновременно. Другой — на то, что две шестерки одновременно не выпадут ни разу. Спрашивается, сколько надо сделать бросков, чтобы шансы на выигрыш первого игрока превысили шансы второго.

— Ясно, что здесь возможны 36 комбинаций, — говорит Мате.

— Это почему же? — сейчас же придирается Фило.

— Да потому, что каждая из шести граней первой кости варьируется с шестью гранями второй. Следовательно, число возможных вариантов есть 6 х 6, что всегда равно 36. И только один из этих 36 вариантов дает выигрыш первому игроку. Стало быть, вероятность выпадения двух шестерок очень мала: 1/36 около 0,028. А вероятность невыпадения, наоборот, очень велика: 1–1/36 = 35/36 около 0,972. При вторичном броске вероятность невыпадения сохраняется (35/36), так как она не зависит от результата первого броска. Значит, согласно теореме умножения, вероятность невыпадения с учетом обоих бросков будет уже равна произведению вероятностей каждого броска в отдельности, то есть (35/36)2. Тогда вероятность выпадения при двух бросках равна: 1 — (35/36)2, что больше вероятности при одном броске почти вдвое: 1 — (35/36)2 около 1–0,95 = 0,05. Остается выяснить, каково должно быть минимальное число бросков, чтобы вероятность выпадения превысила вероятность невыпадения, то есть стала бы больше половины. Обозначим неизвестное нам число бросков через х. Тогда вероятность невыпадения (35/36)х, вероятность выпадения р = 1 — (35/36)x. Вот и всё!

— Позвольте! — шебаршится Фило. — Как же все, если икс так и остался ненайденным? И каким способом вы думаете его найти?

— Очевидно, либо с помощью логарифмов, либо подбирая вместо икса числа, при которых вероятность выигрыша станет больше 0,5.

— Значит, именно так решали эту задачу в семнадцатом веке?

— Вот этого не скажу. К сожалению, лично мне способы Паскаля, Ферма и де Мере не известны.

— Зато известны результатыих решений, мсье, — напоминает бес. — У Паскаля и Ферма х = 25. А шевалье де Мере, как вы помните, получил два ответа 24 и 25. И теперь у нас есть полная возможность выяснить, какой же из них верен.

— Вот именно, — кивает Мате. — При x = 24: р= 1 — (35/36)24  1–0,5094 = 0,4906. При х = 25: p = 1 — (35/36)25  1–0,4955 = 0,5045. Так что правы-то все-таки Паскаль и Ферма: вероятность, превышающая половину — 0,5045, — получается именно при х = 25.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика