— А знаете, это и впрямь чертовски занимательно, — признался Фило.
— Погодите, я еще не кончил, — остановил его Мате. — Повернем тот же треугольник по ходу часовой стрелки градусов этак на сорок, заодно увеличив его на несколько строк, а потом сложим числа каждой горизонтальной строки.
— Зачем?
— Сейчас поймете.
Мате выписал треугольник, поставив на уровне каждой строки сумму ее чисел.
1 1
1 2 3
2 3 5 10
3 5 8 13 29
5 8 13 21 34 81
8 13 21 34 55 89 220
13 21 34 55 89 144 233 589
21 34 55 89 144 233 377 610 1563
— Во-первых, обратите внимание на то, что вдоль левой боковой стороны этого числового треугольника расположены последовательные числа Фибоначчи, — сказал он.
— Обратил, — подтвердил Фило. — А во-вторых?
— Во-вторых, исследуя полученные суммы, я увидел, что каждую из них можно, в свою очередь, представить в виде суммы ряда простых чисел. Для порядка начнем с единицы — ведь она как-никак тоже число простое.
1 = 1 (1 слагаемое)
3 = 3 (1 слагаемое)
10 = 3 + 7 (2 слагаемых)
29 = 3 + 7 + 19 (3 слагаемых)
81 = 3 + 7 + 19 + 23 + 29 (5 слагаемых)
220 = 3 + 7 + 19 + 23 + 29 + 31 + 37 + 71 (8 слагаемых)
589 = 3 + 7 + 19 + 23 + 29 + 31 + 37 + 43 + 67 + 71 + 79 + 83 + 97 (13 слагаемых)
1563 = 3 + 7 + 19 + 23 + 29 + 31 + 37 + 43 + 67 + 71 + 79 + 83 + 97 + 101 + 103 + 107 + 109 + 113 + 131 + 137 + 173 (21 слагаемое)
— Чуете? — спросил Мате, закончив таблицу и торжествующе посмеиваясь.
Но Фило лишь виновато хлопал глазами.
— Эх вы! — пристыдил его Мате. — Да тут и ребенку ясно, что количество простых чисел, входящих в каждую сумму, тоже образует ряд Фибоначчи.
— Но это же замечательное открытие! — бурно обрадовался Фило.
— До открытия далеко. Я исследовал только восемь строк треугольника, а их бесконечное множество.
— Так найдите общее доказательство.
— Только и всего? — Мате язвительно осклабился. — Попробуйте-ка сами!
— Э, нет, слуга покорный! Предоставим это мессеру Леонардо, — отшутился Фило. — К тому же вы все еще не ответили на мой вопрос.
— Наоборот! — энергично запротестовал Мате. — Я только и делаю, что отвечаю на него. Я показал вам, как перспективна игра с числами вообще и с числами Фибоначчи в частности. Она чревата самыми непредвиденными открытиями, которые могут привести к самым неожиданным практическим результатам. Вот почему я так высоко оцениваю этот удивительный числовой ряд. А теперь…
Он засунул руку в карман, позвякал там медяшками и без всякого видимого перехода предложил Фило отгадать, сколько монет у него в кармане. Фило обиделся: за кого его принимают? Факир он, что ли?
— Ладно! — смилостивился Мате. — Я не заставлю вас гадать ни на картах, ни на кофейной гуще. Вот вам некоторые наводящие данные. В кармане у меня только трех- и пятикопеечные монеты на сумму 49 копеек.
— Так бы сразу и сказали! Теперь я, по крайней мере, понимаю, что должен составить уравнение, и притом весьма простое. Обозначим число пятачков через
— Ставлю вам пять с плюсом, — сказал Мате. — Уравнение отличное. Но как вы его решите?
Фило призадумался. Попробуйте-ка решить одно уравнение с двумя неизвестными!
— Не беда, — утешил его Мате. — Мы ведь с вами знаем, что число монет каждого достоинства может быть только целым, а не дробным. Так давайте попробуем подобрать эти числа. Начнем, естественно, с самого маленького целого числа: с единицы. Иначе говоря, предположим, что пятачок у меня всего один. Пишем:
— Простите, 44/3 не целое число…
— Прекрасно. Значит, наше предположение отпадает. Теперь допустим, что
— Браво! — ликовал Фило. — Задача решена!
— Экий вы быстрый! А ну как есть другое решение? А вдруг у меня не два, а пять пятачков? Возможно это или невозможно?
— Сейчас узнаем. 5 х 5 + 3
— Как видите.
— Поискать, что ли, другие?
И Фило принялся за поиски. Перебрав варианты