Читаем Искатели необычайных автографов или Странствия, приключения и беседы двух филоматиков полностью

— Не хотите ли отведать ломтик этого восхитительного эллипса, Мате? — предложил он, желая щегольнуть вновь приобретенными познаниями.

Но увы! Мате сказал, что дыня не эллипс, а эллипсоид вращения.

— Это что еще за фрукт?

— Скорее, продукт. Продукт вращения эллипса вокруг своей оси. При этом как раз и получается тело, напоминающее дыню.

— С вами не соскучишься! Не объясните ли заодно, что такое арбуз?

Фило надеялся, что Мате нипочем не ответит. Но тот преспокойно объявил, что арбуз — шар, иначе говоря, продукт вращения круга вокруг своего диаметра. А так как круг можно рассматривать как частный случай эллипса, то есть как эллипс, у которого все оси одинаковы, стало быть, шар есть частный случай эллипсоида.

Фило опешил. Что ж это делается?! Выходит, арбуз — частный случай дыни? Но Мате не нашел в его выводе ничего нелепого. Наоборот! По его мнению, Фило начинает рассуждать как настоящий математик. Тот хмуро поклонился.

— Приятно слышать. Но, откровенно говоря, до сих пор я себе нравился больше. Как сказано в «Евгении Онегине», «куда, куда вы удалились, весны моей златые дни». Где то прекрасное время, когда я ел арбуз, не подозревая, что он — частный случай дыни? Где, скажите мне, та счастливая пора, когда я воспринимал мир непосредственно, не размышляя, не думая о том, что он такое с точки зрения математики?

— Вас послушать, так размышление свойственно только науке, — колко возразил Мате. — А разве ваше дражайшее искусство не рассуждает, не анализирует, не пытается осмыслить действительность?

— Да, пытается. И осмысливает. Но своими средствами. Без помощи гиперболического параболоида. — Фило постучал пальцем по груди. — С помощью сердца. А сердце, милостивый государь, математике не подвластно. Сердца математикой не проанализируешь.

— Ошибаетесь, — холодно сказал Мате. — Сердце — это не что иное, как «эр», равное двум «а», умноженным на единицу плюс косинус тэта.

— Мате, голубчик, что вы такое говорите! — не на шутку встревожился Фило. — Вы не заболели?

Но Мате не заболел. Просто, сказал он, есть в математике такая кривая, очень похожая на сердце, каким его обычно рисуют влюбленные, только без стрелы. Называется она кардиоидой. От греческого слова — «кардиа» — «сердце». Ее-то уравнение он и привел.

Мате снова вытащил свой видавший виды блокнот, нарисовал кардиоиду и показал Фило.

— В самом деле, похоже, — криво усмехнулся тот. — И кто это только выдумал?

— Один ученый, о котором вы, конечно, не знаете. Паскаль.

— За кого вы меня принимаете! — оскорбился Фило. — Могу ли я не знать о человеке, из-за которого получал в детстве двойки? У него еще есть закон о давлении чего-то там на что-то…

— Во-первых, не чего-то на что-то, а жидкости и газа на стенки сосуда. А во-вторых, мы с вами говорим о разных Паскалях. Вы имеете в виду великого французского ученого семнадцатого века Блеза Паскаля, а я — его отца, Этьена Паскаля, тоже замечательного математика. Именно он изучал кривую, которая получила название улитки Паскаля. — Мате нарисовал замкнутую самопересекающуюся кривую с петелькой внутри. — Видите, эта петелька может увеличиваться и уменьшаться. Когда она исчезает совсем, улитка Паскаля превращается в кардиоиду.

Фило сосредоточенно ощупал левую сторону груди. Как же так? Неужели, с точки зрения математики, сердце — всего-навсего частный случай какой-то улитки?!



Острые глазки Мате потеплели, засветились добродушной хитрецой. Мог ли он предполагать, что Фило не понимает научного юмора? Ведь кардиоида — не сердце, а всего лишь сходная с ним кривая. А говоря о кривых, не стоит быть слишком прямолинейным.

— Ага! — закричал Фило. — Значит, вы признаете, что человеческое сердце и математический расчет — две вещи несовместные?

— Ну, это еще неизвестно. Строение живых организмов — предмет пристального внимания инженеров, которые ищут в природе прообразы своих будущих сооружений. Природа, знаете ли, на редкость изобретательный конструктор. У нее есть чему поучиться. Возьмите, к примеру, летучую мышь…

— Ни за что! — Фило брезгливо поморщился. — Я их терпеть не могу.

Мате пожал плечами: за что такая немилость? Летучие мыши не только совершенно безобидны, но даже полезны. Они уничтожают вредных насекомых, и как раз в такое время, когда делать это абсолютно некому, — ночью.

— Вслепую?! — изумился Фило.

— В том-то и дело!

И Мате принялся рассказывать.

Оказывается, зрение у летучей мыши очень слабое. Но природа снабдила ее таким свойством, которое с лихвой восполняет этот недостаток. При полете она непрерывно издает неслышные для нас ультразвуки. Отражаясь от встречных предметов, звуковые волны возвращаются к ней обратно и предупреждают о приближении препятствия. Вот почему летучая мышь стала прообразом радиолокатора.

А птицы? Они с незапамятных времен служили людям моделью летательных аппаратов. Впрочем, чтобы летать по-настоящему, человеку недостаточно скопировать птичьи крылья. На поверхностном, нетворческом подражательстве далеко не улетишь.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Том 22. Сон  разума. Математическая логика и ее парадоксы
Том 22. Сон разума. Математическая логика и ее парадоксы

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Хавьер Фресан

Математика