— Потому, что каждая из шести граней первой кости варьируется с шестью гранями второй. Следовательно, число возможных вариантов есть 6×6, что всегда равно 36. И только один из этих 36 вариантов дает выигрыш первому игроку. Стало быть, вероятность выпадения двух шестерок очень мала: 1/36 ≈ 0,028. А вероятность невыпадения, наоборот, очень велика: 1 — 1/36 = 35/36 ≈ 0,972. При вторичном броске вероятность невыпадения сохраняется (35/36), так как она не зависит от результата первого броска. Значит, согласно теореме умножения, вероятность невыпадения с учетом обоих бросков будет уже равна произведению вероятностей каждого броска в отдельности, то есть (35/36)2
. Тогда вероятность выпадения при двух бросках равна: 1 — (35/36)2, что больше вероятности выпадения при одном броске почти вдвое: 1 — (35/36)2 ≈ 1—0,95 = 0,05. Остается выяснить, каково должно быть минимальное число бросков, чтобы вероятность выпадения превысила вероятность невыпадения, то есть стала бы больше половины. Обозначим неизвестное нам число бросков через— Позвольте! — шебаршится Фило. — Как же всё, если икс так и остался ненайденным? И каким способом вы думаете его найти?
— Либо с помощью логарифмов, либо подбирая вместо икса числа, при которых вероятность выигрыша станет больше половины.
— Значит, именно так решали эту задачу в семнадцатом веке?
— Вот этого не скажу. К сожалению, лично мне способы Паскаля, Ферма и де Мере не известны.
— Зато известны результаты их решений, мсье. У Паскаля и Ферма
— Вот именно, — кивает Мате. — При х = 24:
При х = 25:
Так что правы все-таки Паскаль и Ферма: вероятность, превышающая половину — 0,5045, получается именно при х = 25.
— Слава тебе господи! — ублаготворенно вздыхает Фило. — Одна задача с плеч долой. Можно переходить к следующей…
Но в это время из знакомой нам книги Лесажа, где на обложке Хромой бес возносит в ночное небо сеньора в испанском плаще и широкополой шляпе, вырывается чей-то отчаянный баритон в сопровождении дикого кошачьего хора.
— Асмодей, Асмодей! Куда вы запропастились? Я жду вас целую вечность!
— Дон Клеофас Леандро-Перес Самбульо, — смешливым шепотом поясняет черт. — Всегда этот студент влипает в какие-то истории.
Услыхав голоса сородичей, Пенелопа и Клеопатра приходят в страшное волнение и начинают носиться по квартире как угорелые. Буль, которому передается их беспокойство, рычит, задрав голову к потолку. Но виновник переполоха и ухом не ведет.
— Асмодей! — взывает Самбульо. — Есть у вас совесть? Бросили меня на крыше, а тут какой-то кошачий симпозиум.
«Мя-а-а-у! Мя-а-а-у!» — завывают коты на крыше.
«Мяу! Мяу!» — вторят кошки в комнате.
И тут Асмодей не выдерживает (он бес не БЕСсердечный).
— Лечу, дорогой дон Леандро-Перес! — восклицает он, торопливо доедая пирог. — Продержитесь еще немного.
Он вихрем взвивается к потолку и снова исчезает за картонной обложкой, откуда сразу же доносится жалобный визг разгоняемых симпозиатов вперемешку с чертыханием Самбульо. Потом все стихает, и Асмодей с расцарапанным носом, но зато в прекрасном настроении вновь занимает место у стола.
— Ну и переделка, мсье! По-моему, там собрались все коты Мадрида. Только не пришлось им закончить свою КОТОвасию. Ко-ко-ко…
— Сходное положение. Совсем как во второй задаче де Мере, — острит Мате. — Игроки вносят деньги, но не успевают закончить игру. После чего им приходится выяснять, какая часть ставки причитается каждому.
— Добавьте, мсье, что в игре участвуют трое, бросающие трехгранные кости, и что каждый ставит на одну из граней.
— Разберемся по порядку, — начинает Мате. — Допустим, игроки условились бросать кости по очереди до тех пор, пока у одного из них задуманное число очков не выпадет, скажем, шесть раз. При этом первый, кому повезет, забирает все три ставки себе. Теперь рассмотрим такую картину. У одного игрока уже было пять удач. Значит, до выигрыша ему остается всего один счастливый бросок. У второго и третьего до выигрыша не хватает двух удачных выпадений, то есть у каждого из них задуманное число очков выпало по четыре раза. Но в это время игра по какой-то причине прерывается, и тут возникает вопрос: как разделить поставленные деньги?
— Вот так задачка! — Фило озабоченно почесывает затылок. — На месте де Мере я бы тоже ее не решил.