Читаем Искатели необычайных автографов полностью

— Потому, что каждая из шести граней первой кости варьируется с шестью гранями второй. Следовательно, число возможных вариантов есть 6×6, что всегда равно 36. И только один из этих 36 вариантов дает выигрыш первому игроку. Стало быть, вероятность выпадения двух шестерок очень мала: 1/36 ≈ 0,028. А вероятность невыпадения, наоборот, очень велика: 1 — 1/36 = 35/36 ≈ 0,972. При вторичном броске вероятность невыпадения сохраняется (35/36), так как она не зависит от результата первого броска. Значит, согласно теореме умножения, вероятность невыпадения с учетом обоих бросков будет уже равна произведению вероятностей каждого броска в отдельности, то есть (35/36)2. Тогда вероятность выпадения при двух бросках равна: 1 — (35/36)2, что больше вероятности выпадения при одном броске почти вдвое: 1 — (35/36)2 ≈ 1—0,95 = 0,05. Остается выяснить, каково должно быть минимальное число бросков, чтобы вероятность выпадения превысила вероятность невыпадения, то есть стала бы больше половины. Обозначим неизвестное нам число бросков через х. Тогда вероятность невыпадения (35/36)x, вероятность выпадения р = 1 — (35/36)x. Вот и все.

— Позвольте! — шебаршится Фило. — Как же всё, если икс так и остался ненайденным? И каким способом вы думаете его найти?

— Либо с помощью логарифмов, либо подбирая вместо икса числа, при которых вероятность выигрыша станет больше половины.

— Значит, именно так решали эту задачу в семнадцатом веке?

— Вот этого не скажу. К сожалению, лично мне способы Паскаля, Ферма и де Мере не известны.

— Зато известны результаты их решений, мсье. У Паскаля и Ферма х = 25. А шевалье де Мере получил два ответа: 24 и 25. И теперь у нас есть возможность выяснить, какой из них верен.

— Вот именно, — кивает Мате. — При х = 24:

р = 1 — (35/36)24 ≈ 1 — 0,5094 = 0,4906.

При х = 25:

р = 1 — (35/36)25 ≈ 1 — 0,4955 = 0,5045.

Так что правы все-таки Паскаль и Ферма: вероятность, превышающая половину — 0,5045, получается именно при х = 25.

— Слава тебе господи! — ублаготворенно вздыхает Фило. — Одна задача с плеч долой. Можно переходить к следующей…

Но в это время из знакомой нам книги Лесажа, где на обложке Хромой бес возносит в ночное небо сеньора в испанском плаще и широкополой шляпе, вырывается чей-то отчаянный баритон в сопровождении дикого кошачьего хора.

— Асмодей, Асмодей! Куда вы запропастились? Я жду вас целую вечность!

— Дон Клеофас Леандро-Перес Самбульо, — смешливым шепотом поясняет черт. — Всегда этот студент влипает в какие-то истории.

Услыхав голоса сородичей, Пенелопа и Клеопатра приходят в страшное волнение и начинают носиться по квартире как угорелые. Буль, которому передается их беспокойство, рычит, задрав голову к потолку. Но виновник переполоха и ухом не ведет.

— Асмодей! — взывает Самбульо. — Есть у вас совесть? Бросили меня на крыше, а тут какой-то кошачий симпозиум.

«Мя-а-а-у! Мя-а-а-у!» — завывают коты на крыше.

«Мяу! Мяу!» — вторят кошки в комнате.

И тут Асмодей не выдерживает (он бес не БЕСсердечный).

— Лечу, дорогой дон Леандро-Перес! — восклицает он, торопливо доедая пирог. — Продержитесь еще немного.

Он вихрем взвивается к потолку и снова исчезает за картонной обложкой, откуда сразу же доносится жалобный визг разгоняемых симпозиатов вперемешку с чертыханием Самбульо. Потом все стихает, и Асмодей с расцарапанным носом, но зато в прекрасном настроении вновь занимает место у стола.

— Ну и переделка, мсье! По-моему, там собрались все коты Мадрида. Только не пришлось им закончить свою КОТОвасию. Ко-ко-ко…

— Сходное положение. Совсем как во второй задаче де Мере, — острит Мате. — Игроки вносят деньги, но не успевают закончить игру. После чего им приходится выяснять, какая часть ставки причитается каждому.

— Добавьте, мсье, что в игре участвуют трое, бросающие трехгранные кости, и что каждый ставит на одну из граней.

— Разберемся по порядку, — начинает Мате. — Допустим, игроки условились бросать кости по очереди до тех пор, пока у одного из них задуманное число очков не выпадет, скажем, шесть раз. При этом первый, кому повезет, забирает все три ставки себе. Теперь рассмотрим такую картину. У одного игрока уже было пять удач. Значит, до выигрыша ему остается всего один счастливый бросок. У второго и третьего до выигрыша не хватает двух удачных выпадений, то есть у каждого из них задуманное число очков выпало по четыре раза. Но в это время игра по какой-то причине прерывается, и тут возникает вопрос: как разделить поставленные деньги?

— Вот так задачка! — Фило озабоченно почесывает затылок. — На месте де Мере я бы тоже ее не решил.

Перейти на страницу:

Все книги серии Филоматики

Искатели необычайных автографов, или Странствия, приключения и беседы двух филоматиков
Искатели необычайных автографов, или Странствия, приключения и беседы двух филоматиков

Любитель изящной словесности Филарет Филаретович Филаретов, или сокращенно Фило, и признающий только красоту математики Матвей Матвеевич Матвеев, или сокращенно Мате, отправляются в путешествие по прошедшим эпохам в поисках автографов великих писателей и математиков. Каково же их удивление, когда оказывается, что они разыскивают одних и тех же людей! На страницах этой удивительной книги вы повстречаетесь с Омаром Хайямом, Блезом Паскалем, Эратосфеном, Фибоначчи, Пифагором и многими другими великими людьми, которые, возможно, предстанут в новом, незнакомом для вас качестве. Немаловажно, что книга написана простым понятным языком и не требует специальных знаний в области математики.

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Математика

Похожие книги