Читаем Искатели необычайных автографов полностью

— Да-а-а! И такой-то человек стоит у колыбели науки со столь удивительным будущим. Впрочем, серьезное в жизни нередко начинается с пустяков. Иной раз даже с игры…

— Теория вероятностей, например, — улыбается Паскаль. — Так я с некоторых пор называю наше новое увлечение, которое прежде именовал математикой случайного.

— Теория вероятностей, — со вкусом повторяет Ферма. — Неплохо. Вы мастер точных определений, когда дело касается математики. Полагаю, не менее изобретательны вы и в определении людей. Вот хоть де Мере. Как вы его определите? Одним словом? А?

— Игрок.

Ферма разражается оглушительным хохотом. Браво! Это называется попасть в цель с первого выстрела. Надо, однако, надеяться, что игрок де Мере не приохотил математика Паскаля к азартным играм.

Последнее замечание, проникнутое неподдельной тревогой, живо напоминает Блезу о покойном отце. На какую-то секунду у него перехватывает дыхание, но он тотчас справляется с собой, и ответ его звучит почти весело. Нет, нет. Ферма напрасно беспокоится! Если в нем и проснулся азарт, то не к игре, а к поискам связанных с ней закономерностей. Как ни странно, на ту же удочку попался и сам шевалье, что весьма пошло ему на пользу: он хоть и с грехом пополам, а справился все же с одной из двух задач, о которых Блез писал в Тулузу, — с той, где говорится об одновременном выпадении двух шестерок. Забавнее всего, что, решая эту задачу двумя способами, де Мере получил и два ответа. Один из них утверждает, что необходимо произвести двадцать пять бросков, второй — что хватит и двадцати четырех.

— И который же из двух ему больше нравится? — иронизирует Ферма.

— Представьте себе, второй. И так как шевалье не в состоянии обнаружить ошибку ни в одном из своих решений, он бранит теперь математику при каждом удобном случае, называя ее наукой неточной.

Ферма снисходительно посмеивается. Бедняга де Мере! Ему бы не в математике усомниться, а в собственной логике.

— В том-то и дело, что логике он доверяет куда меньше, чем игорной практике, — возражает Паскаль. — А практика якобы убеждает его, что наилучшее число бросков — двадцать четыре, так как после двадцати четырех бросков он-де выигрывал чаще всего.

— Что за чепуха! Чтобы вывести подобную закономерность опытным путем, надо не отходить от игорного стола годами.

— Что делать, — разводит руками Блез, — ему никак не втолкуешь, что практические результаты игры не должны да и не могут точно совпадать с математически вычисленной вероятностью. Потому что теоретическая вероятность — это всего лишь идеальный и практически недостижимый предел, к которому стремится относительная частота удач. И расхождение между ними будет тем меньше, чем больше число сыгранных партий.

— Да, тут вступают в игру большие числа, — говорит Ферма, — а у них, безусловно, свои законы.

— С удовольствием замечаю, что вы, как и я, тоже интересуетесь большими числами, — оживляется Паскаль. — Любопытная, но малоисследованная область. Возьмем простейшую игру в монетку. Логика подсказывает, что вероятности выпадения монеты той или другой стороной совершенно одинаковы, то есть равны половине. Однако при малом числе бросков ожидать этого не приходится. При ста, например, бросках вполне может случиться, что одна сторона выпадет восемьдесят раз, а другая — всего двадцать. Но стоит серию бросков по сто повторить тысячу раз, как обнаружится, что разность между числами выпадения обеих сторон резко сократилась. А повторите ту же серию миллиард раз, и разность несомненно окажется ничтожной…

— …если только у вас хватит терпения да и времени довести такой опыт до конца, — подтрунивает Ферма. — Но шутки шутками, а закономерности больших чисел сыграют когда-нибудь немалую роль в жизни человечества. И уж конечно, не потому, что с их помощью легче выиграть в монетку.

— Не вздумайте объяснять это шевалье де Мере.

— Да уж, это не для него. Так же как задача о разделении ставок. Ведь он, если не ошибаюсь, так и не решил ее. Зато это сделали мы с вами. И, в отличие от де Мере, получили один ответ…

— …несмотря на то, что решали врозь и каждый своим способом.

— По этому поводу вы изволили заметить в последнем вашем письме, что истина везде одна: и в Тулузе, и в Париже, — напоминает Ферма. — Еще одно точное определение! Вы чеканите словесные формулы не хуже математических. Не удивлюсь, если в один прекрасный день мне скажут, что вы стали писателем.

Бледные щеки Паскаля розовеют: похвала не оставляет его равнодушным. И всё же… Вряд ли он отважится взяться за перо.

— Как знать, как знать, — загадочно посмеивается Ферма. — Жизнь иной раз делает такие неожиданные зигзаги.

— Я вижу, размышления о случайностях настроили вас на философский лад.

— Вполне естественно. На мой взгляд, нет на свете науки более философской, чем наука о случайностях. Ведь она связана с самыми главными пружинами бытия.

— Вы хотите сказать, что миром правит случай?

— Конечно. Хоть это и не означает, что в нем царит хаос. Да ведь и в случайностях, как подумаешь, тоже есть своя закономерность…

Перейти на страницу:

Все книги серии Филоматики

Искатели необычайных автографов, или Странствия, приключения и беседы двух филоматиков
Искатели необычайных автографов, или Странствия, приключения и беседы двух филоматиков

Любитель изящной словесности Филарет Филаретович Филаретов, или сокращенно Фило, и признающий только красоту математики Матвей Матвеевич Матвеев, или сокращенно Мате, отправляются в путешествие по прошедшим эпохам в поисках автографов великих писателей и математиков. Каково же их удивление, когда оказывается, что они разыскивают одних и тех же людей! На страницах этой удивительной книги вы повстречаетесь с Омаром Хайямом, Блезом Паскалем, Эратосфеном, Фибоначчи, Пифагором и многими другими великими людьми, которые, возможно, предстанут в новом, незнакомом для вас качестве. Немаловажно, что книга написана простым понятным языком и не требует специальных знаний в области математики.

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Математика

Похожие книги