Паскаль вскакивает со своего диванчика и горячо пожимает руку Ферма. Давно у него не было такого счастливого вечера! Слышать от друга то, о чем думаешь сам, — что может быть лучше? Недавно, перечитывая Марка Авре́лия, он, Блез, позволил себе не согласиться с этим древнеримским мыслителем, который никак не мог решить, что же господствует на земле: закономерность или случай? Но разве одно исключает другое? Разве случай и закономерность не сосуществуют в этом мире? Мало того: они неотделимы. Закономерности возникают из хаоса случайностей, подчиняясь неким таинственным законам.
— Да, да, — поддакивает Ферма. — Именно так. И вот вам красноречивый пример. В последнее время я, как и вы, упорно размышляю о вопросах, связанных с нашей новой наукой. Но когда ищешь одно, нередко под руку подворачивается другое.
— Что же подвернулось вам?
Ферма таинственно прижимает палец к губам.
— Сейчас узнаете!
Великий треугольник Паскаля
Он выходит из комнаты и тут же возвращается с большой корзиной.
— Что это? — изумляется Паскаль. — Пушечные ядра?
— Яблоки, дорогой мой. Яблоки из моего тулузского рая.
— О! — Паскаль тронут. — Как это мило с вашей стороны.
— То ли вы скажете, когда их попробуете, — откровенно хвастает Ферма. — Знаете что, вы ешьте, а я пока разложу яблоки на столе. С некоторых пор я все время что-нибудь раскладываю и группирую: увлекся фигурными числами.
— Так это и есть ваш секрет?
— Мм… отчасти.
— Решили, стало быть, пойти по стопам Пифагора.
— Отчего же только Пифагора? Фигурными числами занимались еще в Древнем Вавилоне… Так вот, заинтересовавшись фигурными числами, я стал их выкладывать из чего придется. Чаще всего из яблок. Выложу, например, как сейчас, несколько равносторонних треугольников. Первый треугольник — условный, он состоит из одного яблока. Второй — из трех, следующий —из шести, затем — из десяти.
— В общем, получился ряд треугольных чисел. Но что из этого следует? — торопит Паскаль.
— Теперь выложим яблоки пирамидками и получим пирамидальные числа, — тянет Ферма, словно не замечая нетерпения собеседника. — Один, четыре, десять, двадцать…
— А дальше? К чему вы клоните?
— Просто мне захотелось узнать, как вычислить заранее, сколько понадобится яблок, чтобы выложить любое фигурное число, взятое, скажем, из ряда треугольных: 1, 3, 6, 10, 15, 21, 28… Или из пирамидальных: 1, 4, 10, 20, 35, 56, 84… Попутно я загорелся желанием выяснить, сколько вариантов группировок можно составить из некоего количества предметов или чисел.
По мере того как он говорит, лицо Паскаля становится все более напряженным.
— Так, так, продолжайте, — понукает он.
— Допустим, у нас есть восемь яблок, а лучше — восемь разноцветных шариков. Мы хотим узнать, сколько можно составить из них всевозможных группировок, раскладывая каждый раз по три шарика.
— Иными словами, найти число сочетаний из восьми по три.
Ферма глядит на Блеза с откровенным восхищением. Опять определение, и какое! Но Паскалю не до похвал.
— Не отвлекайтесь, прошу вас. Дальше, дальше…
Ферма пожимает плечами. Что же может быть дальше? Само собой, он стал искать способ, позволяющий определять число сочетаний.
— И нашли?!
— Ничего другого мне не оставалось.
Блез в изнеможении откидывается на спинку дивана. Невероятно!
— Не понимаю, что вас поражает? — в свою очередь обескуражен Ферма. — Мой способ очень прост. Кажется, мы собирались найти число сочетаний из восьми по три? Отлично. Для этого пишем подряд все натуральные числа от единицы до восьми включительно. Затем объединяем три числа, стоящие слева: 1, 2, 3, и три числа, стоящие справа: 8, 7, 6, а потом перемножаем каждую тройку чисел и составляем из их произведений дробь. При этом левая часть будет знаменателем, а правая — числителем. Итак, что у нас получилось?
Паскаль подсчитывает:
Ферма довольно потирает руки. Вот и число сочетаний из восьми по три. Нетрудно заметить, что оно к тому же число пирамидальное. Потому что любое пирамидальное или треугольное число есть в то же время какое-нибудь число сочетаний.
Паскаль все еще сидит, откинувшись на спинку дивана, но сейчас он уже не выглядит растерянным.
— Вы меня удивили, — говорит он. — А теперь ваша очередь удивляться.
На той же полоске, где только что подсчитывал число сочетаний, Блез набрасывает группу чисел и передает бумажку Ферма.
— В то время как вы занимались фигурными числами, я копался в этом числовом треугольнике. Составить его, кстати говоря, побудили меня все те же размышления о теории вероятностей. Я нашел в нем кучу любопытных свойств…
— Именно?