Читаем Ископаемое будущее. Почему глобальное процветание человечества требует больше нефти, угля и природного газа полностью

Теперь мы знаем, что в ближайшие несколько десятилетий не существует масштабируемой замены ископаемому топливу, и уж точно нет ничего, что позволило бы нам ограничить, не говоря уже о том, чтобы исключить использование ископаемого топлива к 2050 году без массовых разрушений и смертей.

Поскольку большая часть опасений по поводу использования ископаемого топлива связана с выбросами CO2, естественно, задать вопрос: Можем ли мы продолжать использовать ископаемое топливо и использовать технологию, чтобы каким-то образом улавливать CO2?

Ответ: не рентабельно.

Существует два основных предлагаемых подхода к улавливанию CO2: прямой и косвенный.

 

Прямое улавливание включает в себя улавливание конкретного CO2, выделяемого при данном использовании ископаемого топлива, например, улавливание CO2 в выхлопе угольной электростанции. Примером такого подхода является угольная или газовая электростанция, использующая "улавливание и секвестрацию углерода".

Косвенное улавливание включает в себя улавливание CO2 из любой точки мира для компенсации CO2, выброшенного в результате использования ископаемого топлива. Именно такой подход используется в многочисленных видах "углеродных компенсаций".

Как прямой, так и косвенный улавливание CO2 сегодня невероятно малы из-за фундаментальных проблем с себестоимостью в масштабе.

В 2019 году мир выбросил более 36 миллиардов метрических тонн CO2. Уловленный прямо или косвенно объем составил одну тысячную от этого количества.

Почему?

Причина та же, что и у многих других процессов, о которых я рассказывал: это непомерно дорого для масштабирования.

Давайте сначала рассмотрим прямой захват.

Прямое улавливание в масштабе гораздо более правдоподобно, чем косвенное улавливание, из-за физики, связанной с этим. Прямой улов подразумевает захват потока выбросов CO2 непосредственно с электростанции или другого источника, где они находятся в очень высокой концентрации. Физически гораздо легче уловить что-то в высокой концентрации, чем что-то в низкой концентрации - как мы увидим на примере методов косвенного улавливания CO2 "захватом воздуха".

Но даже прямой захват не может быть масштабирован при низких затратах.

В небольших масштабах это не только недорого, но и выгодно - когда CO2 улавливается непосредственно в месте выброса, а затем направляется в какой-либо промышленный процесс, где он будет полезен, и компании будут за это платить.

Например, нефтедобывающие компании будут платить за уловленный CO2, потому что они могут закачивать его в землю, чтобы облегчить добычу нефти; давление CO2 помогает получить больше нефти из земли.

Но в этом процессе мы видим основной элемент немасштабируемости. В мире добывается столько нефти, что можно утилизировать лишь небольшую часть наших ежегодных выбросов CO2.

Все предлагаемые методы рентабельного улавливания CO2, обычно для промышленных целей, имеют одни и те же проблемы масштабируемости. Основная математика заключается в том, что только около 230 миллионов тонн CO2 используется промышленностью во всем мире, по сравнению с десятками миллиардов тонн, выбрасываемых людьми каждый год.

Поэтому нет ничего похожего на способ выгодного улавливания даже 1 процента мировых выбросов.

Как насчет того, чтобы улавливать их с небольшими потерями, чтобы энергия ископаемого топлива была лишь немного дороже, но без выбросов CO2?

Нет никаких доказательств того, что это можно сделать в больших масштабах.

Одна из серьезных проблем, связанных с непосредственным улавливанием CO2 в масштабах страны, заключается в том, где его хранить. CO2 - это газ, который занимает много места.

Существуют предложения по хранению CO2 под землей, на морском дне или в какой-либо другой форме, которая является стабильной и предотвращает повторное выделение в течение длительного периода времени. Некоторые первые эксперименты показали перспективность хранения CO2 в скальных породах. Но нет ничего, что могло бы справиться со значительной долей наших ежегодных выбросов, не делая энергию намного дороже.

Как бы ни были плохи все эти препятствия на пути к масштабу для прямого улавливания CO2, ситуация с косвенным улавливанием CO2 намного хуже.

Все формы косвенного улавливания сталкиваются с физической проблемой концентрации, о которой я говорил ранее: они пытаются получить CO2 не из потока выхлопных газов, где он высококонцентрирован, а из обычного воздуха, где он существует в очень низкой концентрации.

Самый физически изящный способ извлечения CO2 из обычного воздуха - это растения. Поэтому многие программы "компенсации выбросов углекислого газа" предполагают посадку деревьев или восстановление мангровых зарослей и солончаков, что, по крайней мере, может привести к чистому удалению CO2 из атмосферы.

Перейти на страницу:

Похожие книги

Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять
Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять

Про еду нам важно знать все: какого она цвета, какова она на запах и вкус, приятны ли ее текстура и температура. Ведь на основе этих знаний мы принимаем решение о том, стоит или не стоит это есть, удовлетворит ли данное блюдо наши физиологические потребности. На восприятие вкуса влияют практически все ощущения, которые мы испытываем, прошлый опыт и с кем мы ели то или иное блюдо.Нейрогастрономия (наука о вкусовых ощущениях) не пытается «насильно» заменить еду на более полезную, она направлена на то, как человек воспринимает ее вкус. Профессор Гордон Шеперд считает, что мы можем не только привыкнуть к более здоровой пище, но и не ощущать себя при этом так, будто постоянно чем-то жертвуем. Чтобы этого добиться, придется ввести в заблуждение мозг и заставить его думать, например, что вареное вкуснее жареного. А как это сделать – расскажет автор книги.Внимание! Информация, содержащаяся в книге, не может служить заменой консультации врача. Перед совершением любых рекомендуемых действий необходимо проконсультироваться со специалистом.В формате PDF A4 сохранён издательский дизайн.

Гордон Шеперд

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Медицина и здоровье / Дом и досуг
Вызовы и ответы. Как гибнут цивилизации
Вызовы и ответы. Как гибнут цивилизации

Арнольд Тойнби (1889–1975) – английский философ, культуролог и социолог. Он создал теорию «вызова и ответа» (challenge and response) – закономерность, которая, по его мнению, определяет развитие цивилизации. Сэмюэл Хантингтон (1927–2008) – американский философ, социолог и политолог. Он утверждал, что каждая цивилизация видит себя центром мира и представляет историю человечества соответственно этому пониманию. Между цивилизациями постоянно идет противостояние и нередко возникают конфликты. Исход такой борьбы зависит от того, насколько данная цивилизация «соответствует» сложившемуся миропорядку.В данной книге собраны наиболее значительные произведения А. Тойнби и С. Хантингтона, позволяющие понять сущность их философии, сходство и расхождения во взглядах. Особое внимание уделяется русской цивилизации, ее отличиям от западной, точкам соприкосновения и конфликтам русского и западного мира.

Арнольд Джозеф Тойнби , Самюэль Хантингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература