Читаем Искусственные внешние ресурсы для освоения космоса полностью

При требуемом изменении скорости ракеты 10 км/с, вода и водород становятся примерно равноценными по затратам вещества и энергии, однако в случае использования воды температура в сопле двигателя будет существенно выше; если же требуется придать ракете скорость 12–15 км/с, то водород, конечно, лучше.

Однако для очень больших скоростей и удельных импульсов, более 20 км/с, при использовании плазменного двигателя с магнитным рабочим трактом, разница между различными видами вещества становится менее существенной, и в определённом интервале температур вода и другие вещества могут оказаться предпочтительнее водорода.

В целом, для транспортно-энергетической системы вблизи Юпитера лучше использовать воду (в виде льда с внешним нагревом для основного потока грузов, и жидких продуктов электролиза для локальных манёвров); для запусков с Земли выбор вариантов намного больше.

2. Гравитационная энергетика в системе Юпитера

Прежде чем лететь к Солнцу, посмотрим, что нам может дать его скромный младший брат. Он меньше, но его проще использовать.

Во-первых, до Юпитера намного проще долететь: для прямого полёта к Солнцу надо вылететь с Земли со скоростью 33 км/с, а для достижения Юпитера нужна скорость 16 км/с, хотя время полёта в несколько раз больше. На обычных химических ракетах до Солнца вообще не добраться никак.

Во-вторых, возле Юпитера прохладно, и можно почти не заботиться о теплозащите для ледяных и даже водородных снарядов.

В-третьих, вокруг Юпитера много спутников и просто кусков льда, их общая масса всего в 20 раз меньше массы Земли, так что воду с собой везти не надо. Система Юпитера может быть почти неисчерпаемым источником энергии и вещества для других областей Солнечной системы.

Правда, II космическая скорость для границы атмосферы Юпитера не очень большая, около 60 км/с, что для наших целей маловато, но для начала хватит.

2.1 Базовый

энергетический цикл

Возьмём два куска льда, в точке, удалённой от Юпитера на 10–20 миллионов километров. Лёд можно отколупнуть от любого из полусотни мелких спутников, диаметром 1–5 км, которые вращаются в этой зоне с орбитальными скоростями 3–5 км/с. (Причём внешние спутники, с расстояниями более 20 млн. км, вращаются навстречу внутренним, что тоже можно использовать).

Запустим эти два куска с небольшой начальной скоростью, 4–5 км/с, в сторону Юпитера, так, чтобы они двигались по двум встречным ветвям параболической или очень длинной эллиптической траектории. Примерно через месяц они достигнут нижней точки траектории, разогнавшись при этом почти до 60 км/с, столкнутся почти над самой атмосферой Юпитера, с относительной встречной скоростью 120 км/с, и испарятся, превратившись в плазму при температуре 40–50 тысяч градусов.

Само по себе это не очень полезно для нас, хотя, пожалуй, можно использовать для освещения.


Возьмём теперь ракету. Её придётся привезти с Земли (если, конечно, мы так и не научимся делать высокопроизводительные 3D-принтеры с вращательной подачей материала из рулонов).

Но ракету придётся привезти 1 раз, а заправлять её мы будем на месте.

Ракету запустим по такой же траектории, а навстречу ей — много мелких кусочков льда. Внутри ракеты тоже будут такие же кусочки, (или жидкая вода, подаваемая в сопло струйками).

В нижней точке траектории, произойдёт взаимодействие порций вещества, имеющих большую разность скоростей, и при этом часть выделившегося избытка кинетической энергии может быть преобразована в полезную работу, то есть в данном случае в кинетическую энергию оставшейся массы вещества (ракеты). Ранее, в пунктах 1.9–1.10, мы рассмотрели 2 различных способа организации такого взаимодействия, но их намного больше, можно предложить ещё 3–4 альтернативных варианта. Но мы видели, что, практически независимо от выбранного варианта преобразования энергии, конечный результат, фактически, зависит только от её (энергии) начального запаса; то есть примерно 55–60 % избытка кинетической энергии расходуемого топлива может быть передано ракете. Если масса ракеты примерно вдвое меньше массы всего затраченного топлива (в обоих рассмотренных случаях, затрачивалось 11 тонн топлива при оставшейся массе 5 тонн), то её скорость относительно планеты может быть увеличена с 60 до 90 км/с, и тогда снова на бесконечность она выйдет со скоростью почти 70 км/с, и удельной кинетической энергией 2,3 ГДж/кг.


Далее, надо сделать ещё несколько манёвров.

Оставшаяся в ракете часть топлива должна отделиться от неё, первоначально в виде небольших контейнеров или кассет с собственными устройствами управления и навигации, и продолжить движение к цели с максимальной скоростью (и энергией); однако, саму ракету (уже без топлива) надо сразу же снова затормозить на 30 км/с, так, чтобы она снова достигла исходного пункта заправки, на расстоянии 20 млн. км от Юпитера, с почти нулевой скоростью. (проще всего, вообще-то, использовать для этого атмосферу самой планеты, и какую-то разновидность парашюта, возможно электромагнитного).


Перейти на страницу:

Похожие книги

Числа против лжи
Числа против лжи

Данное издание выходит в новой редакции, недавно сделанной автором. Оно заметно отличается от предыдущих. Правильно ли мы представляем себе сегодня здание древней и средневековой истории? Созданная в XVI–XVII веках н. э. И. Скалигером и Д. Петавиусом, принятая сегодня версия хронологии и истории, по-видимому, содержит крупные ошибки. Это понимали и на протяжении длительного периода обсуждали многие выдающиеся ученые. Но построить новую, непротиворечивую концепцию истории оказалось очень сложной задачей.Начиная с 1973 года, исследованием проблемы занялся А.Т. Фоменко, а через некоторое время — под его руководством — группа математиков Московского государственного университета им. М.В. Ломоносова. А.Т. Фоменко и его коллегами были созданы новые математико-статистические методы обнаружения дубликатов (повторов), содержащихся в летописях.Разработаны новые методы датирования событий. Вскрыты ошибки в принятой сегодня хронологии. Излагается «история истории»: кем, когда и как была создана принятая сегодня версия «древности». Как математика помогает вычислять даты древних событий? Почему картина звездного неба, записанная в известном библейском Апокалипсисе, указывает на конец XV века? Приводится один из главных результатов Новой Хронологии, а именно, «глобальная хронологическая карта», позволившая обнаружить поразительные сдвиги в хронологии, с помощью которых средневековая история X–XVII веков была искусственно «удлинена» хронологами XVII–XVIII веков.Книга является уникальным событием в международной научной жизни, она не оставит равнодушным ни одного читателя. От читателя не требуется никаких специальных знаний. Нужен лишь интерес к всеобщей и русской истории и желание разобраться в ее многочисленных загадках. Книга предназначена для самых широких кругов читателей, интересующихся применением естественно-научных методов в истории.

Анатолий Тимофеевич Фоменко

Альтернативные науки и научные теории
Эволюция не по Дарвину
Эволюция не по Дарвину

Предлагаемая вниманию читателя книга — принципиально новое пособие по эволюционной теории, альтернативное всем существующим, а также первый в мировой литературе опыт всестороннего и систематического рассмотрения причин научной несостоятельности классического дарвинизма, синтетической теории эволюции и других форм селекционизма. Одновременно достаточно полно проанализированы и переоценены открытия и достижения мировой эволюционной мысли недарвиновской и антидарвиновской ориентаций, начиная с истоков и до сегодняшнего дня, побуждающие к отказу от привычных стереотипов. Книга содержит также описание складывающихся основ системной модели эволюции живого, с привлечением последних достижений биоценологии, палеобиологии, экологии, общей теории систем, а также биохимии, классической и новой генетики, геносистематики, вирусологии, иммунологии и многих других дисциплин, которые еще не получили отражения в учебниках и руководствах по эволюционной теории. Первостепенное внимание при этом уделено механизмам эволюции, запускаемым в периоды биосферных кризисов. Книга написана простым, общедоступным языком, не отягощенным узкоспециальной терминологией.Для преподавателей, аспирантов и студентов биологических факультетов университетов, академий и педагогических вузов, слециалистов-биологов, философов, а также широкого круга читателей, интересующихся биологией, и, в частности, современным состоянием эволюционной теории.

Вадим Иванович Назаров

Альтернативные науки и научные теории