Умна ли AlphaGo? Ее разработчики – определенно. Им удалось решить сложную математическую задачу, над которой десятилетиями бились десятки лучших умов. Одной из наиболее поразительных вещей в математике является то, что она учит видеть закономерности в окружающем мире. Большинство вещей функционирует согласно математическим правилам: кристаллы растут регулярным образом, цикады впадают в спячку под землей на годы и просыпаются лишь тогда, когда температура почвы достигает нужной отметки, и таких примеров множество. AlphaGo – это прорыв в математике, достижение, которое было бы невозможным без аппаратного и программного прогресса в вычислительной технике. Стоит признать достижение команды разработчиков.
Однако AlphaGo не является разумной машиной. У нее нет сознания. Она делает только одну вещь: играет в компьютерную игру. Она содержит данные 30 млн игр, сыгранных любителями и профессионалами го, поэтому в каком-то смысле AlphaGo в высшей степени глупа. Чтобы победить одного-единственного мастера, программе требуется грубая сила и плоды труда множества людей. Программа и заложенные в ней вычислительные методы пригодятся для более полезных задач, требующих массивной переработки чисел. И это действительно полезно для мира – но далеко не все в мире является вычислениями.
Итак, рассмотрев математические и физические реалии программ вроде AlphaGo, мы оказались в сфере философии и спекуляции о будущем. И это совершенно другое интеллектуальное пространство. Есть футуристы, которые
С философской точки зрения существует много интересных вопросов, касающихся анализа разницы между вычислениями и сознанием. Большинство людей слышали про тест Тьюринга. Несмотря на название, в нем нет ничего общего с форматом анкеты, которую робот должен пройти, чтобы сойти за человека. В своей работе Тьюринг предложил сложный эксперимент, заключавшийся в беседе с машиной. Вопрос «могут ли машины мыслить?» он считал абсурдным и предлагал ответить на него результатами опросов общественного мнения. (Тьюринг был снобом от математики. Как многие в те времена и некоторые сегодня, он верил в превосходство математики над всеми прочими интеллектуальными изысканиями.) Вместо этого он предложил «игру в имитацию». Играют в нее мужчина (А), женщина (В) и экзаменатор (С). С сидит один в комнате и печатает вопросы для А и В. «Цель игры заключается в том, что экзаменатор должен определить, кто из остальных двоих женщина, а кто – мужчина. Ему они известны как X и Y, и в конце игры он говорит либо ‘X – это А, a Y – B’, либо ‘X это B, a Y – А’», – пишет Тьюринг[12].
Затем он предлагает определить, какие типы вопросов может задавать игрок С. Один из них о длине волос. А, мужчина, должен заставить игрока С ошибиться и потому лжет. В, женщина, хочет помочь С и говорит ей или ему, что он – женщина. Но ведь А может соврать и сказать то же самое. Их ответы записываются, чтобы окраска и тон голоса не дали экзаменатору никаких зацепок. Тьюринг продолжает: «Теперь мы спрашиваем: “Что произойдет, если вместо А будет играть компьютер? Будет ли экзаменатор ошибаться так же часто, как и в игре с женщиной и мужчиной?” Эти вопросы заменяют наш изначальный вопрос “Могут ли машины мыслить?”».
В случае, если экзаменатор не может по ответам определить, кто перед ним – человек или машина, компьютер признается
Философские аргументы Тьюринга также не вызывают доверия. Вероятно, наиболее основательную критику можно обнаружить у философа Джона Сёрла – в его тезисе о китайской комнате. В 1989 г. ему удалось собрать воедино все свои замечания в статье для журнала