При этом исследователи отказались от запрограммированных символических правил и переключились на машинное обучение. Эта техника позволяла компьютерам самообучаться благодаря использованию огромных объемов данных. При получении достаточно больших объемов информации такие системы можно было научить действовать «разумно», например выполнять переводы, распознавать лица или управлять автомобилем. «Если положить друг на друга определенное количество кирпичей, а затем отойти подальше, то можно увидеть перед собой дом», – говорит Крис Бишоп из кембриджского подразделения
Несмотря на то, что конечная цель не изменилась, сами методы создания ИИ претерпели ряд важных преобразований. Ранние проектировщики систем инстинктивно придерживались принципов нисходящего программирования. Они старались воссоздать интеллектуальное поведение с помощью формирования математической модели того, как мы обрабатываем речь, текстовую и графическую информацию, и ее дальнейшей реализации в виде компьютерной программы, которая могла бы логически оценивать поставленные перед ней задачи. Этот подход оказался ошибочным. Инженеры полагали, что любой прорыв в искусственном интеллекте позволит нам лучше понять свой собственный, – и они вновь ошиблись.
С годами становилось все более ясно, что такие системы не могут взаимодействовать с беспорядочным реальным миром. Отсутствие значимых результатов после десятилетий работы привело к тому, что к началу 1990-х годов большинство инженеров начали отказываться от своей мечты по созданию универсальной, способной к дедукции и рассуждениям машине. Исследователи стали присматриваться к более скромным проектам, делая акцент только на задачах, которые могли бы решить.
Некоторого успеха удалось добиться системам по подбору рекомендуемых товаров. Несмотря на сложности с пониманием причин, побуждающих человека к покупке, программы без труда составляли список товаров, которые могли бы заинтересовать покупателя, на основании данных о его предыдущих покупках или выборе товаров похожей категории клиентов. Если вам понравились первый и второй фильмы о Гарри Поттере, то с большой долей вероятности понравится и третий. Для принятия такого решения не нужно разбираться в мотивации: анализ большого количества данных поможет вам обнаружить все необходимые связи.
Могут ли такие восходящие цепочки взаимосвязей смоделировать и другие формы разумного поведения? В конце концов, в ИИ существовали и другие проблемные области, где не было теории, но было множество данных для анализа. Столь прагматический подход ознаменовал положительные сдвиги в областях распознавания речи, машинного перевода и простых задач по машинному распознаванию образов (например, распознавание рукописных чисел).
Новые успехи в середине 2000-х годов помогли области ИИ усвоить самый важный урок: данные могут оказаться намного сильнее теоретических моделей. Появилось новое поколение интеллектуальных машин, основанных на небольшом наборе алгоритмов статистического обучения и больших объемах данных.
Исследователи также отказались от предположения о том, что ИИ позволит лучше понять наш собственный интеллект. Попытайтесь узнать из алгоритмов, как именно люди выполняют разные задачи, и вы гарантированно потратите время впустую: интеллект – это набор данных, а не алгоритм.
Область ИИ прошла через смену парадигмы и вступила в новую эру искусственного интеллекта на основе больших данных, или
Представьте себе спам-фильтр в электронной почте, который решает выборочно изолировать определенные письма на основе их содержимого. Каждый раз, когда вы перемещаете письмо в «Спам», вы позволяете этому фильтру считать сообщения от данного отправителя или письма, содержащие определенное слово, спамом. Использование этой информации для всех слов в сообщении позволяет спам-фильтру выстроить эмпирические предположения о новых письмах. Глубоких знаний здесь не требуется – вся процедура ограничивается подсчетом частоты использования слов.
Когда данные идеи применяются в колоссальном масштабе, происходит нечто удивительное: машины начинают делать то, что было бы крайне трудно запрограммировать напрямую, например завершать предложения, предсказывать наш следующий клик или рекомендовать какой-то товар. Данный подход продемонстрировал отличные результаты в языковом переводе, распознавании рукописного ввода, распознавании лиц и многом другом. Вопреки предположениям 60-летней давности, нам не обязательно задавать точное описание интеллектуальных качеств для воссоздания их в машине.