Экспертные системы применяются для диагностики, прогнозирования, планирования и классификации в самых разных областях, таких как медицина, оценка страховых рисков, геологоразведка, и т. д. У наиболее удобных экспертных систем механизм логического вывода также выдает разъяснения, чтобы пользователь мог понять ход рассуждений. Одной из первых известных экспертных систем стала
При разработке экспертных систем часто возникают проблемы, связанные с получением и кодификацией знаний от занятых узких специалистов или из книг и статей. Кроме того, бывает непросто представить знания в виде набора фактов и правил, с которыми будут согласны все эксперты, а также присвоить им весовые коэффициенты (для обозначения вероятности или важности). Сегодня многие люди пользуются «рекомендательными системами» – смежной технологией ИИ, которая больше ориентирована на предсказание предпочтений пользователей в разных областях, от фильмов и книг до финансовых услуг и потенциальных брачных партнеров.
СМ. ТАКЖЕ «Человеческое использование человеческих существ» (1950), Представление знаний (1959), Глубокое обучение (1965)
Экспертные ИИ-системы часто создаются путем извлечения специальных знаний людей (на этом рисунке они изображены в виде светящихся лампочек). Экспертная информация при этом преобразуется в набор вероятностных правил.
Нечеткая логика. 1965
«Теория нечетких множеств применяется в коммерческих экспертных системах и устройствах для управления поездами и лифтами, – пишет ученый Джейкоби Картер. – Ее также объединяют с нейросетями для управления производством полупроводников. Благодаря встраиванию нечеткой логики и нечетких множеств в производство были заметно улучшены многие ИИ-системы. Этот подход оказался особенно эффективным в случаях с неоднозначными данными или недостаточно изученными правилами».
Классическая двузначная логика имеет дело с условиями, которые либо истинны, либо ложны. Теория нечетких множеств, описывающая элементы множеств с разными
Нечеткая логика находит применение в самых разных сферах. В качестве примера можно привести устройства с системой контроля температуры. Функция принадлежности применима к понятиям «холодный», «теплый» и «горячий», но одному замеру могут соответствовать три значения, такие как «не холодный», «слегка теплый» и «слегка горячий». Заде считал, что если запрограммировать регуляторы в цепи обратной связи на работу с неточным, зашумленным вводом, то они будут более эффективны и просты в реализации.
Одно из значимых событий в истории нечеткой логики произошло в 1974 г., когда Ибрагим Мамдани (1942–2010) из Лондонского университета использовал ее для управления паровым двигателем. В 1980 г. нечеткая логика была применена для регулировки цементной печи. Японские компании использовали нечеткую логику для управления процессами очистки воды и железнодорожными сетями. Сегодня она применяется для управления сталелитейными заводами, процессами ферментации, автомобильными двигателями, антиблокировочными системами, системами проявки цветных пленок и устройствами для обработки стекла. Ее встраивают в компьютерные программы для биржевой торговли, системы распознавания различий в письменной и разговорной речи, фотокамеры с автоматической фокусировкой и стиральные машины.
СМ. ТАКЖЕ «Органон» Аристотеля (ок. 350 до н. э.), Булева алгебра (1854), Экспертные системы (1965)
На схеме из патента США № 5579439 представлена архитектура нечеткой логики интеллектуального контроллера в системе управления заводом. Архитектура включает в себя искусственную нейросеть для генерации правил нечеткой логики и значений функции принадлежности. «Слой введения нечеткости нейросети механизма обучения может состоять из четырех слоев нейронов: A, B, C, D».
Глубокое обучение. 1965