Читаем Искусственный интеллект на службе бизнеса полностью

Иногда в разработку функции вознаграждения входит кодирование суждения – программирование положительной отдачи до совершения прогноза с целью автоматизации действий. Примером запрограммированных вознаграждений являются беспилотные автомобили. Действие незамедлительно следует за прогнозом. Но вот правильно выбрать вознаграждение не так просто. Следует предусмотреть вероятность, что ИИ чрезмерно оптимизирует один критерий успеха и, как следствие, отклонится от общих целей организации. В сфере беспилотных автомобилей над этим трудятся целые комитеты; однако такой анализ понадобится для самых разных решений.

В других случаях количество возможных прогнозов повышает издержки на предварительное суждение обо всех вариантах отдачи. Человеку приходится дожидаться прогноза и только после этого оценивать отдачу, как это происходит почти во всех процессах принятия решений, с машинным прогнозом или без него. Как мы увидим в следующей главе, машины уже посягают и на это. В некоторых обстоятельствах прогностические машины могут научиться прогнозировать человеческое суждение на основе предыдущих решений.

Подведение итогов

Большинство людей уже занимаются разработкой функции вознаграждения, но не для машин, а для людей. Наставники показывают новым работникам, как функционирует система. Менеджеры ставят сотрудникам цели и подталкивают к повышению эффективности работы. Мы ежедневно принимаем решения и судим о вознаграждении. Но для людей мы объединяем прогноз и суждение, и разработка функции вознаграждения не обособлена. Ее роль будет становиться важнее с повышением точности прогнозов.

Для примера разработки функции вознаграждения рассмотрим ценообразование ZipRecruiter – биржи труда в интернете. Компании платят ей за поиск квалифицированных сотрудников на открывшиеся вакансии. Основной продукт ZipRecruiter – это эффективный и масштабный алгоритм сравнения – версия специалиста по рекрутингу, подбирающего работодателям подходящих соискателей[69].

На сайте ZipRecruiter о стоимости услуг для компаний ничего не сказано. Если цена будет слишком низкая, клиенты начнут бросать деньги на ветер, если слишком высокая – уйдут к конкурентам. Для установления цен ZipRecruiter пригласила экспертов: Дж. П. Дюбе и Санджога Мизру – экономистов Школы бизнеса им. Бута при Университете Чикаго, которые проводили эксперименты по определению оптимальной цены. Они случайным образом называли цены потенциальным клиентам и определяли вероятность покупки каждой группой. Это позволило им выяснить, как люди реагируют на разные цены.

В задачу входило определение значения «оптимальная». Стоит ли компании стремиться к увеличению краткосрочного дохода? В этом случае следует установить высокую цену. Но чем она выше, тем меньше клиентов (пусть даже каждый приносит большую выгоду), и они вряд ли порекомендуют услуги компании другим людям. К тому же в таком случае будет меньше объявлений о вакансиях, количество соискателей снизится. И наконец, высокие цены могут заставить клиентов искать альтернативу. Возможно, один раз они заплатят, но в дальнейшем предпочтут работать с конкурентами. Как же прийти к разумному решению? К какой отдаче стремиться?

Краткосрочные последствия высокой цены измерили относительно легко. Эксперты подсчитали, что повышение цены для некоторых типов новых клиентов повысит ежедневный доход более чем на 50 %. Но ZipRecruiter не стала действовать сразу. Она признала долгосрочные риски и решила проверить, уйдут ли клиенты, которые платят высокую цену. Через четыре месяца повышение цен все еще приносило доход. Компания не хотела и дальше отказываться от получения выгоды, рассудив, что четыре месяца – достаточно долгий срок для внедрения новой цены.

Выяснение вознаграждения в результате разных действий – основная составляющая суждения – является разработкой функции вознаграждения, фундаментальной частью процесса принятия решений человеком. Машинный прогноз – это всего лишь инструмент; пока человеку приходится взвешивать исходы и выносить суждения, главная роль сохраняется за ним.

Выводы

• Прогностические машины повышают отдачу от суждения, поскольку снижением стоимости прогнозов повышают ценность понимания вознаграждения в результате действий. Однако суждение требует издержек. Выяснение вариантов отдачи от разных действий в разных ситуациях требует времени, усилий и экспериментов.

• Многие решения принимаются в условиях неопределенности. Мы решаем взять зонтик, потому что предполагаем, что будет дождь, но он может и не пойти. Мы решаем авторизовать транзакцию, потому что считаем ее правомерной, но можем ошибаться. В условиях неопределенности необходимо выявить варианты отдачи от действий, предпринятых в результате ошибочных решений, а не только верных: неопределенность увеличивает издержки на суждения о вариантах отдачи для данного решения.

Перейти на страницу:

Все книги серии МИФ. Бизнес

Похожие книги

От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...
От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...

Как превратить среднюю (читай – хорошую) компанию в великую?На этот вопрос отвечает бестселлер «От хорошего к великому». В нем Джим Коллинз пишет о результатах своего шестилетнего исследования, в котором компании, совершившие прорыв, сравнивались с теми, кому это не удалось. У всех великих компаний обнаружились схожие элементы успеха, а именно: дисциплинированные люди, дисциплинированное мышление, дисциплинированные действия и эффект маховика.Благодаря этому компании добивались феноменальных результатов, превосходящих средние результаты по отрасли в несколько раз.Книга будет интересна собственникам бизнеса, директорам компаний, директорам по развитию, консультантам и студентам, обучающимся по специальности «менеджмент».

Джим Коллинз

Деловая литература / Личные финансы / Финансы и бизнес
Как гибнут великие и почему некоторые компании никогда не сдаются
Как гибнут великие и почему некоторые компании никогда не сдаются

Джим Коллинз, взирая взглядом ученого на безжизненные руины когда-то казавшихся несокрушимыми, а ныне канувших в Лету компаний, задается вопросом: как гибнут великие? Действительно ли крах происходит неожиданно или компания, не ведая того, готовит его своими руками? Можно ли обнаружить признаки упадка на ранней стадии и избежать его? Почему одни компании в трудных условиях остаются на плаву, а другие, сопоставимые с ними по всем показателям, идут ко дну? Насколько сильными должны быть кризисные явления, чтобы движение к гибели стало неотвратимым? Как совершить разворот и вернуться к росту? В своей книге Джим Коллинз отвечает на эти вопросы, давая руководителям обоснованную надежду на то, что можно не просто обнаружить и остановить упадок, но и возобновить рост.

Джим Коллинз

Деловая литература