Читаем Искусственный интеллект полностью

На представленном ниже рисунке 1а представлена модель биологического нейрона. Он состоит из ядра (тела нейрона), двух видов нервных волокон - аксонов, передающих нервные импульсы и принимающих их дендритов, а также синапсов, влияющих на силу сигнала. Нейрон получает импульсы от аксонов других нейронов через дендриты и при этом сила импульса меняется в зависимости от типа синапса. Если суммарный импульс превышает некоторый порог, то нейрон возбуждается, формирует свой собственный импульс и передает его дальше по аксону. Мозг человека содержит около 1011 нейронов, каждый из которых связан с 103 - 104 другими нейронами.

Когда человек получает новую информацию, то в отдельном участке мозга веса некоторых синапсов меняются и, соответственно, меняется поведение нейронов мозга. Таким образом, при решении какой-нибудь конкретной задачи, в мозгу задействуются соответствующие нейроны, возбуждаемые синапсами, подстроенными под поиск решения. Чем чаще человек сталкивается с задачами одного класса, тем более устойчивыми становятся веса синапсов и меньше времени требуется для поиска решения.

Рисунок lb. Модель искусственного нейрона

синапсы
дендритыРисунок 1а. Модель биологического нейрона

нейрон

№ =у

Математическая формализация биологического нейрона была предложена в середине 50-х годов прошлого века. Модель искусственного нейрона задается в виде скалярной функции векторного аргумента.

На рисунке lb представлена модель нейрона с тремя входами (дендритами), синапсы которых имеют веса м>\, w2 и vr3. Пусть поступающие к синапсам импульсы имеют силу хь х2 и х3. Тогда к нейрону поступает суммарный импульс с силой х = x1*w1+x2*w2+x3*w3.

Выше уже говорилось, что если суммарный импульс превышает некоторый порог, то тогда нейрон преобразует его с помощью некоторой передаточной (активационной) функции у = j [х). Хотя существуют и другие функции активации нейронов, на практике, как правило, чаще всего используется нелинейная логистическая функция или сигмоид вида:

При разработке нейронных сетей для решаемой нами задачи мы использовали именно сигмоид, поскольку эта функция обладает свойством усиливать слабые сигналы и тем самым предотвращает насыщение от больших сигналов, которые соответствуют тем областям аргумента, где сигмоид имеет пологий наклон.

Выходное значение сигмоида лежит в интервале (0; 1), а область чувствительности для входов чуть шире интервала (-1;1). Поскольку при решении реальных задач приходится иметь дело с различными значениями, то для подачи данных на вход сети используются алгоритмы шкалирования данных (к примеру, алгоритм минимакса). Такие алгоритмы, используемые на этапе предварительной обработки данных, называются пре-процессированием, а на этапе заключительной обработки - пост-процессированием (Bishop (1995)).

Существует множество различных алгоритмов обучения нейронных сетей, однако наиболее часто используется алгоритм обратного распространения ошибки (error back propagation), входящий в группу алгоритмов «обучения с учителем». Этот итеративный градиентный алгоритм обучения используется с целью минимизации среднеквадратичного отклонения текущих от требуемых выходов многослойных сетей с последовательными связями. При этом сигналы ошибки от выходов нейронной сети распространяются к ее входам, т.е. в направлении, обратном прямому распространению сигналов, с целью соответствующей подстройки весов синапсов. Таким образом, ошибки нейронной сети служат для оценки производных функции ошибок по отношению к регулируемым весам.

Подробное описание алгоритма обратного распространения ошибки приводится в книге «Искусственные нейронные сети» (Круглов, Борисов (2002)).

2. Эволюционные вычисления, т.е. автономное и адаптивное поведение компьютерных приложений. Прежде всего, эта отрасль затрагивает аспекты самовосстановления и самоконфигурирования сложных систем, состоящих из одновременно функционирующих модулей. Помимо этого, к эволюционным вычислениям относятся автономные агенты, несущие в себе функции электронного секретаря, ассистента, отбирающего нужные сведения в Интернете и т.д.

Примером такого агента может быть свободно распространяемая программа, разработанная фирмой GATOR (\v\v\v. gator, com). хотя мнения ее пользователей неоднозначно. Многие фирмы называют GATOR «сетевым паразитом», поскольку ее агент, следя за предпочтениями пользователя Интернет, навязывает ему посещение сайтов со смежной тематикой и тем самым наносит финансовый ущерб, поскольку уводят пользователя к конкуренту. Однако быстрый и хаотичный рост Web-пространства, несомненно, приведет к появлению интеллектуальных автономных агентов нового поколения, способных к самообучению, взаимодействию с себе подобными и проявляющим самостоятельность при принятии решений. Однако отношение общества к таким «работникам» пока трудно предсказать.

Перейти на страницу:

Похожие книги