Читаем Искусственный интеллект полностью

3. Экспертные системы (ЭС), создание которых традиционно считается классическим занятием специалиста по ИИ. Под ЭС понимают систему (чаще всего воплощенную в виде компьютерной программы), основанную на знаниях экспертов, помогающую специалисту при принятии решений. В каждой области человеческой деятель-

носги существуют знания, которые трудно формализовать математическими формулами, что и обусловило появление ЭС, а сама задача получения знаний выделилась в новое направление инженерии знаний (четкая формулировка знаний эксперта-специалиста и внесение их в базу знаний компьютера).

Для ответа на поставленные пользователем вопросы требуется система извлечения ответов, называемая машиной логического вывода или интерпретатором. В качестве такой системы, компанией PDC был предложен особый инструмент в программировании приложений ИИ - декларативный язык программирования Visual Prolog (или язык Программирования ЛОГики), работа которого основана на исчислении предикатов первого порядка. Полное описание языка и обзор по экспертным системам можно найти в книге (Адаменко, Ку-чуков (2003)). Как уже было сказано, Visual Prolog язык декларативный, что отличает его от традиционных процедурных языков типа С и Basic. В процедурных языках программист должен четко прописать пошаговый алгоритм решения задачи, а в декларативном языке нужно предоставить только описание задачи и основные правила для ее решения. Урезанную по возможностям версию языка Visual Prolog (Visual Prolog 6.1 Personal Edition) можно бесплатно скачать с сайта www.visual-prolog.com.

Из наиболее известных примеров ЭС можно отметить экспертносправочную систему Сус (en-Cyc-lopedia), разработанную компанией Сусогр (www.cvc.com). Эта система содержит более 1 млн. утверждений, охватывает все области знаний и способна делать логические выводы. Кстати, широко известный «скрепыш» - помощник офисных приложений компании Microsoft (Office Assistant), является ни чем иным как самоорганизующейся экспертной системой, в задачу которой входит конфигурирование справочной системы Microsoft Office в соответствии с часто затрагиваемыми темами. Для этих целей «скрепыш» постоянно отслеживает поведение пользователя в рамках семейства офисных программ.

4. Нечеткая логика (fuzzy logic) - направление, предложенное в 1965 году профессором Калифорнийского университета Лофти Заде, сочетающее в себе подходы математической логики и теории вероятностей. В нечеткой логике, в отличие от обычной, высказывания бывают не только истинными или ложными, что позволяет учитывать неопределенности при моделировании ИИ. Для решения практических задач в этой области, качественные переменные описываются некоторой функцией распределения, после чего они уже используются как точные (например, с помощью нечеткой логики можно более точно определить понятие величины дохода человека - «маленький», «средний», «большой», «очень большой»). Согласно знаменитой теореме FAT (Fuzzy Approximation Theorem), доказанной Б. Кос-ко (Kosko (1992)), «любая математическая система может быть аппроксимирована системой, основанной на нечеткой логике.

Основные исследования в области нечеткой логики проводятся в США и Японии, а в числе результатов этих исследований - многочисленные микрочипы, используемые как в бытовой технике (стиральные машины, СВЧ-печи), так и в моторных отсеках автомобилей, в поездах метрополитена и т.д. Свое место нечеткие системы управления нашли в военной технике (например, при проектировании «умных» ракет).

Классическим примером использование нечеткой логики в системах управления стал эксперимент по управлению грузовиком при въезде в узкий гараж. Не делая никаких лишних движений, грузовик каждый раз без труда находил оптимальный путь для заезда. Система, управляющая грузовиком и заменяющая водителя, включала в себя всего лишь небольшой набор нечетких правил типа «если капот направлен влево, то возьми правее» и т.д. (всего 35 правил и 12 нечетких условий). Разработка такой системы посредством обычного математического аппарата потребовала бы на порядок больших усилий, да и вообще могла бы давать сбои в процессе эксплуатации.

Изложение основ нечеткой логики заняло бы слишком много места, поэтому для более детального изучения этого направления мы можем порекомендовать бестселлер Барта Коско (Kosko (1992)), в котором приводится фундаментальное изложение теории нечетких множеств.

Среди русскоязычных источников представляют интерес книги (Левнер, Птускин, Фридман (1998)), (Пивкин, Бакулин, Кореньков (1998)), а также научно-популярная статья А. Масаловича (Масалович (1995)). Кроме того, большая подборка материалов в этой области выложена по адресу:

http://dir.vahoo com/Sdence/Comouter Science/Artifidal Intelligence/

Fuzzy Logic

Перейти на страницу:

Похожие книги