Еще раз подчеркнем, что запуск ракет-носителей на определенную орбиту весьма сложное дело. Оно требует точнейшей работы ряда приборов, описание некоторых из них мы приведем ниже. Самая незначительная ошибка какого-либо из этих приборов приведет к неудаче запуска в целом.
Точность стрельбы орбитальных ракет зависит от ряда причин. Погрешность в угле возвышения вектора скорости в конце активного участка в 1° вызывает изменение высоты перигея (и апогея) на 120 км. Погрешность в скорости 30 м/сек при горизонтальном направлении вызовет изменение высоты апогея на 110 км. Если крайние высоты эллиптической орбиты искусственного спутника, например, колеблются в пределах от 370 км (перигей) до 1480 км (апогей), а конец активного участка траектории находится на высоте 560 км, то можно допустить абсолютную погрешность в угле возвышения до 2°30′ и относительную погрешность в горизонтальной скорости до 1%. Для спутника, летящего на высоте нескольких сот километров, изменение высоты полета на 300 м повлечет за собою изменение периода обращения на 0,4 сек. Изменение же начальной скорости на 30 м/сек вызовет изменение периода обращения на 70 сек. Ошибка в угле возвышения в конце активного участка траектории искусственного спутника не влияет на период его обращения. При движении спутника по эллиптической траектории его скорость меняется, причем в случае, если перигей расположен на высоте 370 км, а апогей на высоте 1480 км, разница в скорости достигает 1,22 км/сек.
Необходимая «точность стрельбы» ракет-носителей ИСЗ обеспечивается соответствующими приборами управления. Что же представляют собой эти приборы и как происходит управление полетом ракет-носителей?
Траектория и режим полета ракеты, вычисленные предварительно, должны точно выдерживаться.
Вполне понятно, что для осуществления этого ракета должна иметь точнейшие приборы, работа которых будет связана с действием наземных установок.
Принцип действия большинства из них очень сложен, поэтому мы опишем в общих чертах задачи, которые будут выполняться основными приборами.
Для того чтобы ракета-носитель вышла на орбиту по рассчитанной траектории и были строго выдержаны режимы и время работы отдельных ступеней ракеты, она должна управляться на всем пути полета.
Если в пределах плотной атмосферы для изменения направления полета ракеты могут служить рули, похожие на рули реактивных самолетов, то в зоне сильно разреженной атмосферы они будут менее эффективны.
Как же будет осуществляться управление в этом случае? К. Э. Циолковским для этой цели были предложены так называемые газовые рули. Их принцип действия заключается в том, что рули, изготовляемые из тугоплавкого материала, например из графита, и располагаемые в струе вырывающихся из сопла раскаленных газов, отклоняют эту струю в ту или иную сторону и тем самым меняют направление полета ракет. Поворот газовых рулей осуществляется с помощью программного механизма или по радиосигналам с Земли.
Существует и другой способ, о котором упоминалось при описании ракеты-носителя спутника. Если ракета будет иметь не только центральные, но и боковые двигатели, то, попеременно включая или выключая последние, можно осуществить управление ракетой после выхода ее в космос.
Наконец, конструкция ракет может быть такой, что можно изменять направление струи истекающих газов, поворачивая продольную ось самого двигателя относительно продольной оси ракеты.
Такой способ управления применяется в ряде современных дальнобойных ракет.
При запуске ракеты первостепенное значение имеет стабилизация ее в полете на траектории, т. е. обеспечение того, чтобы ракета при движении не отклонилась, а точно следовала бы по заданной ей траектории полета.
Наиболее важными узлами системы стабилизации ракеты во время ее полета является автопилот с гироскопическими чувствительными элементами. Гироскоп — особого рода волчок, вращающийся с большой угловой скоростью. Такое тело стремится сохранить неизменным направление своей оси вращения относительно мирового пространства, т. е. ось свободного гироскопа стремится сохранить то положение, которое ей было задано при запуске гироскопа. Гироскопические устройства, с помощью которых осуществляется стабилизация ракеты в полете, используют именно это свойство гироскопов. На основе таких гироскопических устройств конструкторы авиационного приборостроения создали прибор, называемый автопилотом.