После этого спутник снова коснется атмосферы, но он будет иметь уже меньшую скорость. Поэтому ИСЗ войдет в атмосферу несколько глубже, чем в первый раз, и скорость его еще более замедлится. Наконец, после того как этот процесс повторится несколько раз, ИСЗ значительно уменьшит свою скорость. С этого момента он будет осуществлять спуск при еще достаточно высоких скоростях, но уже на специально предусмотренных выдвижных крыльях и плоскостях для планирования.
Для реализации второго способа торможения ИСЗ должен иметь автоматически управляемый в полете ракетный двигатель. Для осуществления торможения реакция двигателя должна быть направлена в сторону, противоположную движению ИСЗ.
В этом положении скорость ИСЗ будет уменьшаться, и ее можно будет регулировать при помощи изменения тяги ракетного двигателя. Другими словами, спуск ИСЗ в этом случае будет носить характер, обратный его подъему. Большое значение для спуска на Землю будет иметь точнейшее определение расстояния до места приземления. Для этого будут использоваться самые совершенные радиолокационные приборы или автономные средства ориентировки, имеющиеся на ИСЗ. Самые спуск и маневрирование будут проходить под контролем автоматических систем управления. Следует заметить, что если ракета будет использовать атомный двигатель, то для приземления она должна будет иметь вспомогательные реактивные двигатели, работающие на обычном топливе, так как в противном случае место спуска ракеты окажется зараженным радиоактивными веществами.
Оценивая два описанных метода спуска — с помощью воздушного торможения и ракетного торможения, следует сказать, что первый из них является более простым в смысле технического осуществления, но обладает тем существенным недостатком, что чрезвычайно трудно рассчитать место приземления.
Второй способ технически более сложен, но зато требуемая точность приземления может быть выдержана.
Спасение результатов научных наблюдений и доставка их на Землю является одной из важнейших проблем первых ИСЗ.
Сам ИСЗ со всеми приборами, вероятно, сгорит как метеорит, врезавшись с громадной скоростью в плотные слои атмосферы.
Между тем очень желательно, чтобы спутник со всеми приборами вернулся на Землю или чтобы на Землю вернулись хотя бы приборы или части приборов, содержащие информацию, которую нельзя передать по радио. К такой информации относятся, например, спектрографические наблюдения за ультрафиолетовой и рентгеновской частью спектра Солнца и звезд, которая полностью срезается в атмосфере озоном и не наблюдается на Земле, пробы атмосферы на высоте полета ИСЗ и др. По радио на Землю будут передаваться некоторые сведения о коротковолновой части спектра, полученные с помощью фотонных счетчиков. Однако гораздо более полные и ценные сведения могут быть получены с помощью спектрографа. Этот прибор, предназначенный для установки на спутнике, будет иметь некоторые особенности. Вместо призмы, разлагающей солнечный свет на его составляющие, будет использована небольшая вогнутая решетка (радиус кривизны 40–50 см), имеющая 6000–7000 тысяч штрихов на 1 см. Если сам спутник не будет ориентирован на Солнце, то за Солнцем будет следить зеркало, направляющее его свет на щель спектрографа. Солнечный спектр будет фотографироваться на фотопленку, наматывающуюся на легкий барабан.
Все сведения о солнечном спектре будут содержаться в этой фотопленке. На Землю также необходимо передать фотопленку от фотографировавших Землю фотоаппаратов.
С помощью искусственных спутников Земли можно проводить длительные наблюдения первичного космического излучения. Наблюдая космические лучи, мы можем получить сведения о тех процессах, которые испытывают космические лучи на пути от места их зарождения.
Тем самым мы с помощью космических лучей оказываемся в состоянии зондировать окружающий нас мир.
Не подлежит сомнению, что со временем приборы, установленные на спутниках, дадут возможность непрерывно следить за первичным космическим излучением. Будут обнаружены также компоненты в составе космических лучей, которые будут давать нам сведения о Вселенной в несравнимо большем масштабе, чем известное в настоящее время космическое излучение.
Более детальные данные о процессах образования и распада частиц при ядерных взаимодействиях высокой энергии, которые могут подвести нас уже к проблемам структуры элементарных частиц[42]
, может дать изучение космических лучей с помощью фотопластинок с толстым слоем специально приготовленной фотоэмульсии. Для исследования космических лучей нужно пачку толстостенных пластинок на небольшой срок (не более полумесяца) поместить на интересующую нас высоту. За этот срок в эмульсии накопится достаточное количество следов, а первые следы еще не потеряют способности к проявлению.