Читаем Искусство философствования полностью

Основателем греческой математики и философии был Фалес, молодой человек, живший в 600 г. до н. э. Путешествуя, он посетил Египет, и египетский фараон спросил его, может ли он определить высоту пирамиды Хеопса. Фалес в определенный момент времени измерил длину тени от пирамиды и свою собственную тень. Очевидно, что соотношение его роста к длине его тени было то же самое, что и соотношение высоты пирамиды к длине отбрасываемой ею тени, поэтому ответ был найден посредством решения уравнения с одним неизвестным. Затем фараон спросил Фалеса, может ли он определить расстояние до корабля, находящегося в море, оставаясь на суше. Это более сложная задача, и трудно дать ей какое-то общее решение, хотя, судя по легенде, Фалесу это удалось. В принципе нужно наблюдать направление движения корабля с двух точек на суше, расстояние между которыми известно; чем дальше будет корабль, тем меньше разница между этими двумя направлениями движения. Полный ответ требует использования тригонометрии, которая была изобретена много сотен лет спустя. Однако в конкретных случаях можно легко найти ответ. Предположим, например, что берег простирается с востока на запад, корабль находится на севере в определенной точке A от берега и на северо-западе в определенной точке B. Тогда расстояние от A до корабля равно расстоянию от A до B, в чем читатель может легко убедиться, начертив соответствующую фигуру. Предположим, на корабле находятся вражеские силы, а египетские войска вышли на берег отразить их удар. В такой ситуации знание расстояния, на котором находится корабль от берега, будет весьма полезным.

Настоящая математика начинается с достижения, известного как теорема Пифагора. Египтяне сделали некоторые первые шаги в геометрии для того, чтобы, как говорят, измерять рисовые поля после наводнений. Они заметили, что треугольник, стороны которого соответственно 3,4 и 5 единиц длины, имеет прямой угол. Пифагор (или какой-то его ученик) отметил интересный факт в отношении этого треугольника. Если вы построите квадраты на сторонах этого треугольника, один из них будет иметь 9 квадратных единиц, другой 16, а третий – 25, а 9 + 16 = 25. Пифагор (или его ученик) обобщил этот факт и доказал, что в любом прямоугольном треугольнике квадраты коротких сторон в сумме равны квадрату длинной стороны. Это было наиболее важное открытие, воодушевившее греков на создание науки геометрии, что они и сделали с изумительным мастерством.

Но помимо этого открытия возникло и беспокойство, которое тревожило как греков, так и современных математиков и было полностью устранено лишь совсем недавно. Предположим, дан прямоугольный треугольник, в котором катеты имеют длину один дюйм; в таком случае какую длину будет иметь третья сторона? Квадрат каждого катета равен одному квадратному дюйму, следовательно квадрат гипотенузы будет равен двум квадратным дюймам. Значит длина гипотенузы должна измеряться таким числом, чтобы квадрат этого числа был равен 2. Это число называется «квадратный корень из 2». Греки вскоре сделали открытие, что такого числа нет. Вы сами можете легко в этом убедиться. Это число не может быть целым, поскольку 1 для него слишком мала, а 2 – слишком велика. А если вы умножите дробь на дробь, то вы получите другую дробь, но не целое число; поэтому ни одна дробь, помноженная на самое себя, не даст вам 2. Значит, квадратный корень из двух не является ни целым числом, ни дробью. Чем это может быть еще, оставалось тайной, но математики продолжали с надеждой использовать этот пример, говорить о нем, ожидая, что однажды они поймут, о чем они говорят. И в конце концов эти надежды оправдались.

Сходная проблема возникла с тем, что называется «кубический корень из 2». Иными словами, с числом x таким, что x, помноженное на x, помноженное на х равно 2. Некий город, согласно легенде, страдал от разного рода напастей и, наконец, послал гонца к Дельфийскому оракулу, чтобы узнать причину этих несчастий. Бог сообщил, что его статуя в посвященном ему храме в этом городе слишком мала, и он хочет, чтобы статуя была в два раза больше. Жители поспешили выполнить пожелание Господа и сначала решили сделать статую в два раза выше, чем прежняя. Но потом они поняли, что она должна быть также в два раза шире и толще, на что понадобится в восемь раз больше материала, значит на самом деле статуя будет в восемь раз больше. Но это больше, чем приказал оракул, и большая трата денег. Насколько тогда должна быть шире старой новая статуя, если в целом она должна быть в два раза больше? Жители послали гонца к Платону узнать, может ли кто-нибудь из его школы помочь им найти ответ. Платон сформулировал проблему для математиков. Однако лишь несколько столетий спустя они сделали вывод, что данная проблема неразрешима. Конечно, можно найти приблизительное решение, но так же, как и в случае с квадратным корнем из двух, ни одна из дробей не дает точного ответа. Несмотря на то, что проблема не была решена, в поисках ее решения было проделано много полезной работы.

Перейти на страницу:

Все книги серии Искусство мыслить

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
История марксизма-ленинизма. Книга вторая (70 – 90-е годы XIX века)
История марксизма-ленинизма. Книга вторая (70 – 90-е годы XIX века)

Во второй книге серии «История марксизма-ленинизма» (первая книга вышла в 1986 году) рассматривается диалектика развития марксизма в последние три десятилетия XIX века в тесной связи с образованием массовых рабочих социалистических партий II Интернационала.В книге анализируются такие классические произведения марксизма, как «Критика Готской программы» Маркса, «Анти-Дюринг» и «Диалектика природы» Энгельса и др. Рассматривается дальнейшая разработка диалектического и исторического материализма, теории социализма, марксистской концепции революционного процесса. Специальные главы посвящены марксистской политической экономии (II и III тома «Капитала»), а также взглядам основоположников марксизма на особенности и перспективы российского общества. Значительное место в томе уделяется теоретической деятельности соратников и учеников Маркса и Энгельса – Бебеля, Каутского, Лафарга, Либкнехта, Лабриолы, Меринга, Плеханова, Благоева и др. Развитие марксизма представлено в книге как процесс его непрерывного творческого обновления, включающего в себя и критический пересмотр теоретических результатов, достигнутых марксистской мыслью на том или ином этапе ее истории.* * *На этом издание многотомной «Истории марксизма-ленинизма» прекратилось.* * *Вторая книга серии вышла в двух частях (первая часть – до шестой главы включительно; справочный аппарат – общий для двух частей в конце второй части). В настоящем электронном издании обе части книги объединены в один файл. Состав творческого коллектива, опубликованный в начале издания, включает списки обеих частей книги.В бумажном издании книги имеются значительные фрагменты текста, набранные мелким шрифтом. В электронном издании эти фрагменты оформлены как цитаты.

Коллектив авторов

Философия