Ферма хотел найти способ решения задач следующего типа. Царь пообещал своему доверенному советнику в награду за верную службу земельный надел у моря. Советник получил от царя 10 километров изгороди, чтобы застолбить прямоугольный участок, упирающийся в морской берег[90]
. Советнику, естественно, хотелось бы, чтобы площадь его надела была максимальной. Как ему следует расположить изгородь?По сути дела, тут можно варьировать лишь одну переменную – длину стороны участка, перпендикулярной берегу, которую я обозначу буквой Х
. По мере ее роста протяженность участка вдоль моря уменьшается. Какое соотношение этих двух длин даст максимальную площадь прямоугольника, ограниченного изгородью? На первый взгляд может показаться, что следует выбрать квадратную форму. Стремление к максимальной симметрии часто бывает правильной стратегией для обнаружения шортката к решению. Например, мыльный пузырь стремится к симметричной сферической форме, при которой содержащийся в нем воздух окружает поверхность наименьшей возможной площади. Но даст ли симметрия квадрата правильный ответ нашему доверенному советнику?Есть очень простая формула зависимости площади участка от Х
, переменной длины стороны. Поскольку длина участка вдоль берега равна 10 – 2Х, площадь участка А должна составлятьХ
× (10 – 2Х) = 10Х – 2Х2.Какое значение Х
делает эту величину наибольшей? Можно, конечно, просто перебирать значения Х, пока нам не покажется, что мы нашли такое из них, которое делает площадь самой большой. Но это долгий путь к решению задачи. Ферма понял, что существует и другой, более легкий.
Рис. 6.3. График зависимости площади участка от длины одной из сторон. Площадь максимальна там, где горизонтальная прямая пересекает кривую в одной точке, а не в двух
Шорткат, который он нашел, состоял в преобразовании формулы площади в изображение. Построим график функции 10Х
– 2Х2. На самом деле этот шорткат в итоге избавляет и от необходимости строить графики, но, чтобы найти шорткат, иногда приходится сначала идти в обход. График представляет собой кривую, сперва растущую от Х = 0 до пика, а затем спадающую до Х = 5, при котором площадь равна нулю. Самое главное – выяснить, где находится пик. Именно в этой точке площадь будет наибольшей. Какое же значение Х соответствует пику?Проведем на графике горизонтальную прямую. В общем случае она пересекает кривую в двух точках – кроме самой вершины, в которой горизонтальная прямая лишь касается кривой в одной точке. Эту точку мы и ищем: это вершина графика, соответствующая самой большой площади. Ферма нашел способ определять эту точку, не строя графика. Оказалось, что оптимальную площадь участка дает значение Х
= 2,5. Участок получился не квадратом, а прямоугольником, длинная сторона которого в два раза длиннее короткой. Если вы не боитесь алгебраических выкладок, вот вам более подробное изложение идеи Ферма.