Могущество этого математического шортката использует не только космическая отрасль. Его берут на вооружение и многие коммерческие компании, чтобы максимально увеличить выпуск продукции, минимизировать затраты и найти самые рациональные способы производства. А также авиастроительные предприятия в целях разработки крыльев, вызывающих наименьшее сопротивление воздуха и позволяющих избежать чрезмерного расхода топлива. Капитаны танкеров, которым нужно находить кратчайшие маршруты через бурные воды. Брокеры, старающиеся уловить момент, когда курс акций достигнет самого высокого уровня перед обвалом. Архитекторы, которые хотят максимизировать полезную площадь проектируемых зданий с учетом ограничений, которые налагает окружающая среда. Инженеры, разрабатывающие мосты и стремящиеся минимизировать количество используемых материалов, не жертвуя структурной устойчивостью.
Чтобы достичь этих целей, всем им нужен математический анализ. Если у вас есть сложное уравнение, описывающее то, что вас интересует – экономическую систему, энергопотребление или что-нибудь еще, – он позволяет проанализировать такое уравнение и найти точки, в которых результат будет наибольшим или наименьшим.
Это же средство дало ученым XVII века способность понимать мир, находящийся в постоянном движении. Яблоки падали с деревьев. Планеты обращались по орбитам. Жидкости текли. Газы клубились. Ученым хотелось иметь способ получать моментальные снимки всех этих динамических процессов. И матанализ дал им возможность запечатлевать кадры всех этих движений. Поразительным образом этим же интересовались и работавшие в то время художники. Живописцы эпохи барокко изображали воинов, падающих с коней; архитекторы проектировали здания с размашистыми, динамичными изгибами; скульпторы запечатлевали в камне момент, когда Дафна превращается в дерево прямо в объятиях Аполлона.
Заслуга развития научной революции, произошедшей во второй половине XVII века, принадлежит двум величайшим математикам этой эпохи, Исааку Ньютону и Готфриду Вильгельму Лейбницу. Математический анализ, созданный этими великими людьми, оказался самым потрясающим шорткатом к изучению нашей динамической вселенной. Ричард Фейнман однажды назвал его «языком, на котором говорит Бог».
Поэтому, если вы еще не освоили матанализ, самое время это сделать. Для этого потребуется вникнуть в некоторое количество уравнений, но, можете мне поверить, дело того стоит.
Текучая вселенная
Еще до того, как Джон Гленн завершил орбитальный полет вокруг Земли, матанализ помог ему попасть на эту орбиту. Он ждал пуска на стартовой площадке, зная, что для преодоления гравитационного притяжения Земли корабль должен набрать определенную скорость, которую называют первой космической[87]
. Но точное определение скорости космического аппарата в каждый момент его полета – задача непростая. Все непрерывно изменяется: масса корабля уменьшается по мере сгорания топлива, гравитационное притяжение ослабевает по мере удаления от Земли. Тяга реактивных двигателей состязается с гравитационным притяжением, и кажется, что все вместе образует совершенно неразрешимую головоломку. Но в том и состоит истинная сила математического анализа, что он позволяет видеть картину происходящего в невообразимо сложной системе изменяющихся переменных в любой момент времени.А началось все с яблока, упавшего с дерева в саду принадлежавшей семье Ньютона усадьбы Вулсторп в графстве Линкольншир. Ньютон вернулся из Кембриджа в родной дом, когда началась эпидемия чумы. Кое для кого периоды изоляции во время пандемий, несомненно, бывали плодотворными. Утверждается, что именно когда театр «Глобус» закрылся на карантин, Шекспир закончил «Короля Лира». Сидя в саду, Ньютон пытался разобраться с задачей вычисления скорости падающего яблока в произвольной точке его пути от ветки до земли. Скорость равна отношению расстояния ко времени, которое занимает перемещение на это расстояние. Если скорость постоянна, все в порядке. Но проблема заключалась в том, что скорость непрерывно изменяется из-за гравитационного притяжения. Все измерения, которые проводил Ньютон, давали ему лишь
Чтобы вычислять скорость с большей точностью, он мог использовать все меньшие временные интервалы. Но для определения точной скорости в любой момент нужно было взять бесконечно малый интервал. В пределе оказывалось, что расстояние нужно делить на нулевое время. Но как делить на 0? Эту операцию сделал осмысленной изобретенный Ньютоном математический анализ.
К тому времени Галилей уже открыл формулу, позволяющую установить, какое расстояние яблоко пролетает за любой временной промежуток. За