Если вам нужны самые скоростные американские горки, оказывается, что матанализ поможет вам составить самый быстрый маршрут до цели. Собственно говоря, это и есть та головоломка, с которой начинается эта глава. Если даны две точки А и Б в вертикальной плоскости, какой будет кривая, начинающаяся в точке А и кончающаяся в точке Б, которую объект, движущийся только под воздействием силы тяжести, пройдет за самое короткое время?
Эту задачу впервые задал не разработчик парка аттракционов, а швейцарский математик Иоганн Бернулли, и было это в 1696 году. Он выбрал ее, чтобы устроить поединок между двумя величайшими умами того времени – своим другом Лейбницем и его лондонским соперником Ньютоном:
Я, Иоганн Бернулли, обращаюсь к самым блестящим математикам мира. Ничто не может быть привлекательнее для человека мыслящего, чем честная, трудная задача, возможное решение которой принесет ему славу и пребудет долговечным ему памятником. Следуя примеру Паскаля, Ферма и проч., я надеюсь заслужить признательность всего научного сообщества, предложив лучшим математикам нашего времени задачу, которая послужит испытанием их методам и силе их разума. Если кто-либо сообщит мне решение предложенной задачи, я во всеуслышание объявлю его достойным славы.
В задаче предлагалось сконструировать наклонный путь, по которому шарик переместится из верхней точки А в нижнюю точку Б за самое короткое возможное время. Может показаться, что самым быстрым будет спуск по прямой. Или, может быть, по параболе, подобной той траектории, по которой следует шарик, подброшенный в воздух. На самом же деле ни одно из этих решений не будет правильным. Самым быстрым оказывается спуск по циклоиде – траектории, которую описывает точка на ободе катящегося велосипедного колеса.
Рис. 6.4. Циклоида: кривая, описываемая точкой окружности, катящейся по прямой
Если я переверну эту кривую, получится наискорейший спуск из А в Б. Кривая опускается ниже уровня конечной точки, и шарик набирает бо́льшую скорость, что позволяет ему преодолеть финишный подъем и докатиться до цели быстрее, чем по любой другой кривой.
Поскольку матанализ может находить минимальное и максимальное значения переменной при определенных условиях, существование бесконечного множества кривых, ведущих из А в Б, не имеет значения. Уравнения всегда позволяют нам найти самую скоростную из них.
В конце концов Ньютон и Лейбниц ввязались в ожесточенный спор о том, кто первым открыл этот поразительный шорткат к нахождению оптимальных решений задач. В течение нескольких лет они обменивались колкостями и обвинениями, пока наконец в 1712 году Лондонскому королевскому обществу не предложили рассудить их спор: действительно ли Ньютонов «метод флюксий», как называл его сам Ньютон, был открыт раньше, и содержится ли в дифференциальном методе, изобретенном Лейбницем, плагиат его идей. В 1714 году Королевское общество официально объявило создателем математического анализа Ньютона и, хотя и признало, что Лейбниц первым опубликовал свое изобретение, обвинило Лейбница в плагиате. Однако доклад Королевского общества по этому вопросу, вероятно, нельзя считать вполне беспристрастным: дело в том, что составил его президент общества, некий сэр Исаак Ньютон.
Лейбница это задело чрезвычайно сильно: он восхищался Ньютоном и так никогда по-настоящему и не оправился от этой обиды. Но по иронии судьбы в конце концов одержала верх та трактовка математического анализа, которую предлагал Лейбниц, а не Ньютон.
Хотя у основополагающих идей Лейбница было много общего с принципами, которыми руководствовался при разработке математического анализа Ньютон, между ними было и важное различие. Лейбниц пришел к своему анализу с более лингвистической, математической стороны. Его не интересовали ни падающие яблоки, ни определение изменений их скорости во времени; он рассматривал гораздо более общую картину. Матанализ Лейбница был предназначен для описания объектов, зависящих от нескольких факторов, для нахождения последствий изменения этих факторов.
Ньютон был в душе физиком, и его стремление описывать физический мир, вероятно, стесняло его возможности. Язык и обозначения, введенные Лейбницем, были гораздо более гибкими и пригодными для использования в разных ситуациях. Именно обозначения Лейбница выдержали проверку временем и преподаются в школах и университетах до сих пор.