Вместо этого утилита была создана как управляемая данными программа. Все строки с названиями символов находятся в табличной структуре, которая значительно крупнее любой из функций в коде (в действительности, если учитывать количество строк, она больше чем любые
Подобная организация упрощает добавление новых названий символов, изменение существующих или удаление старых названий просто путем редактирования таблицы, не затрагивая кода.
Способ организации программы является хорошим Unix-стилем, но формат ее вывода сомнительный. Трудно понять, как практически можно применить вывод в качестве ввода другой программы, поэтому утилита слабо приспособлена к взаимодействию с другими программами.
9.1.2. Учебный пример: статистическая фильтрация спама
Одним интересным случаем управляемых данными программ являются статистические самообучающиеся алгоритмы для обнаружения спама (нежелательной массы электронной почты). Целый класс программ фильтрации почты (которые легко можно найти в Web, например,
Подобные программы стали широко распространенными в Internet очень быстро после выхода в 2002 году примечательной статьи Пола Грэхема (Paul Graham)
Традиционные спам-фильтры требуют, чтобы системный администратор (или другое ответственное лицо) поддерживал информацию об образцах текста, найденных в спаме, — имена узлов, не отправляющих ничего, кроме спама, фразы-приманки, часто используемые порнографическими сайтами или Internet-мошенниками, и аналогичные сведения. В своей статье Грэхем точно подметил, что программистам нравится идея фильтрации по образцам, и иногда они не способны "взглянуть за рамки" данного подхода, поскольку он предлагает им такие возможности проявить свою сообразительность.
С другой стороны, статистические спам-фильтры работают, накапливая информацию от пользователей о том, что те считают спамом, а что нет. Данные сведения вносятся в базы данных статистических корреляционных коэффициентов или
Во всех таких программах корреляционная проверка представляет собой сравнительно простую математическую формулу. Весовые коэффициенты, подставленные в формулу, наряду с проверяемым сообщением служат в качестве неявной управляющей структуры для фильтрующего алгоритма.
Проблема традиционных спам-фильтров на основе сличения с образцом заключается в их хрупкости. Спамеры постоянно состязаются с базами данных правил фильтрации, заставляя кураторов постоянно перенастраивать фильтры, для того чтобы "оставаться на первых позициях в гонке вооружений". Статистические спам-фильтры создают собственные правила фильтрации на основе информации пользователей.
Фактически опыт работы со статистическими фильтрами показывает, что отдельный используемый самообучающийся алгоритм гораздо менее важен, чем качество наборов данных спам/неспам, на основе которых алгоритм вычисляет весовые коэффициенты. Поэтому результаты статистических фильтров действительно больше определяются моделью данных, чем алгоритмом.
Статья
9.1.3. Учебный пример: программирование метаклассов в