Часто приходится иметь дело с электронными устройствами, в которых ток
Зенеровские диоды (стабилитроны).
В качестве примера рассмотрим зенеровский диод (стабилитрон), вольт-амперная характеристика которого приведена на рис. 1.13.Рис. 1.13.
а
— резистор (линейная зависимость); б — зенеровский диод (нелинейная зависимость).Зенеровские диоды используют для получения постоянного напряжения на каком-либо участке схемы. Это достигается за счет тока (в грубом приближении постоянного), получаемого от источника большего напряжения в той же схеме. Например, зенеровский диод, представленный на рис. 1.13, преобразует питающий ток, изменяющийся в указанном диапазоне, в соответствующий (но более узкий) диапазон напряжений. Важно понять, как будет вести себя соответствующее напряжение на зенеровском диоде (зенеровское напряжение пробоя) при изменении питающего тока, это изменение есть мера влияния изменений питающего тока. Оно характеризуется динамическим сопротивлением зенеровского диода, определяемым при заданном токе. (Учтите, что динамическое сопротивление зенеровского диода в режиме стабилизации изменяется обратно пропорционально току). Например, динамическое сопротивление зенеровского диода, создающего напряжение стабилизации 5 В, может быть равно 10 Ом при токе 10 мА.
Воспользовавшись определением динамического сопротивления, найдем, чему будет равно изменение напряжения при изменении питающего тока на 10 %: ΔU
= RдинΔI = 10·0,1·0,001 = 10 мВ или ΔU/U = 0,002 = 0,2 %. Тем самым подтверждаются высокие стабилизирующие качества зенеровского диода. На практике часто приходится иметь дело с такими схемами, как показанная на рис. 1.14.Рис. 1.14.
Здесь ток, протекающий через стабилитрон и резистор, обусловлен имеющимся в той же схеме напряжением, большим чем напряжение стабилизации. При этом I
= (Uвх — Uвых)/R и ΔI = (ΔUвх — ΔUвых)/R, тогда ΔUвых = RдинΔI = (Rдин/R)(ΔUвх — ΔUвых) и наконец, ΔUвых = ΔUвxRдин/(R + Rдин). Следовательно, по отношению к изменениям напряжения схема ведет себя как делитель напряжения, в котором зенеровский диод заменен резистором, сопротивление которого равно динамическому сопротивлению диода при рабочем токе. Приведенный пример показывает, для чего нужен такой параметр, как динамическое сопротивление. Допустим, что в рассмотренной нами схеме входное напряжение изменяется в пределах от 15 до 20 В, а для получения стабильного источника напряжения 5,1 В используется зенеровский диод типа 1NA733 (зенеровский диод с напряжением 5,1 В и мощностью 1 Вт). Резистор сопротивлением 300 Ом обеспечит максимальный зенеровский ток, равный 50 мА: (20 — 5,1)/300.Оценим изменение выходного напряжения, зная, что максимальное сопротивление для выбранного диода составляет 7 Ом при токе 50 мА. В диапазоне изменения входного напряжения ток через зенеровский диод изменяется от 50 мА до 33 мА; изменение тока на 17 мА вызывает изменение напряжения на выходе схемы, равное ΔU
= RдинΔI, или 0,12 В. Другие примеры использования зенеровских диодов вы найдете вТуннельные диоды.
Еще один интересный пример использования параметра динамического сопротивления связан с туннельным диодом. Его вольт-амперная характеристика показана на рис. 1.15.Рис. 1.15.
В области между точками
Рис. 1.16.
Воспользуемся уравнением для делителя напряжения и для изменяющегося напряжения
Uвых
= [R/(R + rt)]Uсигн,