Читаем Искусство схемотехники. Том 1 [Изд.4-е] полностью

где rt - динамическое сопротивление туннельного диода при рабочем токе, Uсигн — изменение малого сигнала, которое до настоящего момента мы обозначали через ΔUсигн (в дальнейшем мы будем пользоваться этим широко распространенным обозначением). Для туннельного диода rt.дин < 0. Значит, ΔU/ΔI < 0 или u/i < 0 для области вольт-амперной характеристики туннельного диода, заключенной между точками А и В. Если rt.дин < 0, то знаменатель становится близким к нулю, и схема начинает работать как усилитель. Напряжение uбат создает постоянный ток, или смещение, которое смещает рабочую точку в область отрицательного сопротивления. (Безусловно, во всяком усилительном приборе необходимо иметь источник питания.)

И наконец, в двух словах история туннельных диодов: они появились в конце 50-х годов, и с ними сразу стали связывать пути разрешения множества проблем схемотехники. Их высокое быстродействие дало основание предположить, что они произведут революцию в области вычислительной техники. К сожалению, оказалось, что эти элементы сложны в использовании; это обстоятельство, а также успешное развитие транзисторов привело к тому, что туннельные диоды сейчас почти не находят применения.

Позже при рассмотрении активных фильтров мы вернемся к явлению отрицательного сопротивления. Тогда вы познакомитесь со схемой преобразователя отрицательного импеданса, которая обеспечивает наряду с другими характеристиками настоящее (а не динамическое) отрицательное сопротивление.

Сигналы

Следующий раздел главы посвящен конденсаторам — элементам, свойства которых зависят от того, как изменяются в схеме напряжения и токи.

Закономерности, с которыми мы познакомили вас при изучении цепей постоянного тока (закон Ома, эквивалентные преобразования схем и др.), сохраняют свою силу и в тех случаях, когда напряжения и токи изменяются по времени. Для лучшего понимания работы цепей переменного тока полезно изучить некоторые распространенные типы сигналов (напряжений, которые определенным образом изменяются во времени).


1.07. Синусоидальные сигналы

Синусоидальные сигналы распространены наиболее широко; именно их мы извлекаем из стенной розетки. Если вы услышите выражение «10 мкВ на частоте 1 МГц», то знайте, что речь идет о синусоидальном сигнале. Математическое выражение, описывающее синусоидальное напряжение, имеет вид

U = Asinft,

где А — амплитуда сигнала, f — частота в циклах в секунду или в герцах.

Синусоидальный сигнал показан на рис. 1.17.



Рис. 1.17.Синусоидальная зависимость изменения амплитуды А от частоты f


Иногда бывает полезно переместить начало координат (t = 0) в точку, соответствующую произвольному моменту времени; в этом случае в выражение для синусоидального напряжения следует включить фазу

U = Asin(2πft + )

Можно также воспользоваться понятием угловая частота и переписать выражение для синусоидального сигнала в другом виде:

U = Asinωt,

где ω — угловая частота в радианах в 1 с.

Если вы вспомните, что ω = 2πf, то все станет на свои места. Основное достоинство синусоидальной функции (а также основная причина столь широкого распространения синусоидальных сигналов) состоит в том, что эта функция является решением целого ряда линейных дифференциальных уравнений, описывающих как физические явления, так и свойства линейных цепей. Линейная цепь обладает следующим свойством: выходной сигнал, порожденный суммой двух входных сигналов, равен сумме двух выходных сигналов, каждый из которых порожден входными сигналами, действующими не в совокупности, а отдельно: иначе говоря, если Вых. (А) — выходной сигнал, порожденный сигналом А, то для линейной цепи справедливо следующее равенство: Вых. (А + В) = Вых. (А) + Вых. (В). Если на входе линейной цепи действует синусоидальный сигнал, то на выходе также получим синусоидальный сигнал, но в общем случае его амплитуда и фаза будут другими. Это утверждение справедливо только для синусоидального сигнала. На практике принято оценивать поведение схемы по ее амплитудно-частотной характеристике, показывающей, как изменяется амплитуда синусоидального сигнала в зависимости от частоты. Усилитель звуковой частоты, например, имеет «плоскую» амплитудно-частотную характеристику в диапазоне от 20 Гц до 20 кГц.

Частота синусоидальных сигналов, с которыми чаще всего приходится работать, лежит в диапазоне от нескольких герц до нескольких мегагерц. Для получения очень низких частот, от 0,0001 Гц и ниже, достаточно аккуратно построить нужную схему. Получение более высоких частот, например до 2000 МГц, также не вызывает принципиальных трудностей, но для сигналов такой частоты нужны специальные линии передач и специальные приемы передачи. Кроме того, здесь приходится иметь дело с микроволновыми сигналами, для которых не подходят привычные схемы, состоящие из отдельных элементов, соединенных между собой проводами, а нужны специальные волноводы.


Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника