Читаем Искусство схемотехники. Том 1 [Изд.4-е] полностью

LC-контур в сочетании с резистором R образует делитель напряжения; в связи с тем, что индуктивность и конденсатор противоположным образом реагируют на изменение частоты, импеданс параллельной LC-цепи на резонансной частоте f0 = 1/2π(LC)1/2 стремится к бесконечности - на характеристике при этом значении частоты должен наблюдаться резкий всплеск. График такой характеристики представлен на рис. 1.63.



Рис. 1.63.


В действительности пик характеристики сглажен за счет потерь в индуктивности и конденсаторе, однако если схема сконструирована хорошо, то эти потери очень невелики. Если же хотят специально сгладить характеристику, то в схему включают дополнительный резистор, ухудшающий добротность контура Q. Такая схема называется параллельным резонансным LC-контуром или избирательной схемой. Она широко используется в радиотехнике для выделения из всего частотного диапазона сигналов некоторой частоты усиления (L или С могут быть переменными, и с их помощью можно настраивать резонансный контур на определенную частоту). Чем выше импеданс источника, тем острее пик характеристики; как вы вскоре убедитесь, в качестве источника принято использовать устройство типа, источника тока.

Коэффициент добротности Q позволяет оценивать характеристику контура: чем больше добротность, тем острее характеристика. Добротность равна резонансной частоте, поделенной на ширину пика, определенную по точкам —3 дБ. Для параллельной RLC-схемы Q = ω0.

Другой разновидностью LC-схем является последовательная LC-схема (рис. 1.64).



Рис. 1.64.Узкополосный режекторный LC-фильтр («ловушка»).


Используя выражение для импеданса, можно показать, что импеданс последовательной LC-схемы стремится к нулю на частоте f0 = 1/2π(LC)1/2; такая схема на резонансной частоте или вблизи нее как бы «захватывает» сигнал и заземляет его. Эта схема, так же как и предыдущая, применяется в основном в радиотехнике. На рис. 1.65 изображена ее характеристика. Для последовательной RLC-cхемы Q = ω0L/R.



Рис. 1.65.


Упражнение 1.26. Выведите выражение для характеристики (определяющей зависимость отношения Uвых/Uвx от частоты) схемы с последовательным LC-контуром, показанной на рис. 1.64.


1.23. Другие примеры использования конденсаторов

Конденсаторы являются необходимым компонентом не только для фильтров, резонансных, дифференцирующих и интегрирующих схем, но и для ряда других немаловажных схем. Более подробно мы поговорим об этих схемах позже, а сейчас просто ознакомимся с ними.

Шунтирование. Импенданс конденсатора уменьшается с увеличением частоты. На этом основано использование конденсатора в качестве шунта. Бывают такие случаи, что на некоторых участках схемы должно присутствовать только напряжение постоянного или медленно меняющегося тока. Если к тому участку схемы (обычно резистору) параллельно подключить конденсатор, то все сигналы переменного тока на резисторе будут устранены. Конденсатор выбирают так, чтобы его импеданс был малым для шунтируемого сигнала. В последующих главах вы встретите множество примеров шунтирования сигналов с помощью конденсатора.

Фильтрация в источниках питания. Обычно, говоря о фильтрации в источниках питания, имеют в виду накопление энергии. Практически при фильтрации происходит шунтирование сигналов. В электронных схемах обычно используют напряжение постоянного тока, которое получают путем выпрямления напряжения переменного тока сети (процесс выпрямления мы рассмотрим дальше в этой главе). Часть составляющих входного напряжения, которое имело частоту 60 (50) Гц, остается и в выпрямленном напряжении, от них можно избавиться, если предусмотреть шунтирование с помощью больших конденсаторов. Шунтирующие конденсаторы — это как раз те круглые блестящие элементы, которые можно увидеть внутри большинства электронных приборов. О том, как конструировать источники питания, мы поговорим позже в этой главе, а затем в гл. 6 еще раз вернемся к этому вопросу.

Синхронизация и генерация сигналов. Если через конденсатор протекает постоянный ток, то при заряде конденсатора формируется линейно нарастающий сигнал. Это явление используют в генераторах линейно-изменяющихся и пилообразных сигналов, в генераторах функций, схемах развертки осциллографов, в аналого-цифровых преобразователях и схемах задержки. Для синхронизации используют также RС-цепи, и на их основе строят цифровые схемы задержки (ждущие мультивибраторы). Во многих областях электроники используют конденсаторы для синхронизации и генерации сигналов, и именно об этих применениях конденсаторов вы более подробно узнаете из гл. 3, 5, 8 и 9.


Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника