Читаем Искусство схемотехники. Том 2 (Изд.4-е) полностью

Рис. 9.78.Квадратурное ЧМ-детектирование.


Входной сигнал и его копия со сдвинутой фазой подаются на фазовый детектор, который вырабатывает некоторое входное напряжение. Фазосдвигающая схема должна быть так хитроумно сделана, чтобы фазовый сдвиг линейно зависел от частоты в диапазоне входных частот (это достигается обычно с помощью резонансных LC-схем). Выходное напряжение будет зависеть, таким образом, от входной частоты. Этот метод называют «двойным балансным квадратурным ЧМ-детектированием». Он применяется во многих ИМС усилителей/детекторов промежуточной частоты (например, САЗ 189).

Детектированием АМ-сигналов. Требуется: способ формирования выходного сигнала, пропорционального мгновенной амплитуде высокочастотного сигнала. Обычно используется выпрямление (рис. 9.79).



Рис. 9.79.АМ-детектирование.


На рис. 9.80 показан весьма своеобразный метод на основе ФАПЧ («гомодинный прием»).



Рис. 9.80.Гомодинное детектирование.


ФАПЧ вырабатывает прямоугольные сигналы с частотой, совпадающей с модулированной несущей. С помощью умножения входного сигнала на это прямоугольное колебание формируется выпрямленный двухполупериодный сигнал; остается только пропустить его через фильтр нижних частот для того, чтобы удалить остатки несущей и выделить огибающую. Если в системе ФАПЧ используется фазовый детектор по схеме ИСКЛЮЧАЮЩЕГО ИЛИ, то выходной сигнал сдвигается на 90° относительно опорного сигнала. В связи с этим на пути сигнала к умножителю следует ввести фазовый сдвиг 90°.

Синхронизация импульсов и восстановление сигнала. При цифровой передаче сигналов по каналу связи передается битовая последовательность, содержащая информацию. Информационные сигналы могут быть по своей природе цифровыми или аналоговыми сигналами, представленными в цифровом виде, как, например, в «импульсно-кодовой модуляции» (ИКМ, см. разд. 13.20). Очень похожей ситуацией является декодирование цифровой информации, считываемой с магнитной ленты или диска. В обоих случаях могут появляться помехи и изменения частоты следования импульсов (например, за счет растягивания ленты), поэтому желательно иметь чистый сигнал синхронизации на той же частоте, что и считываемые информационные сигналы. Система ФАПЧ будет работать здесь превосходно. Фильтр нижних частот исключил бы только дрожание и помехи на входной синхронизирующей последовательности, но медленные изменения скорости ленты остались бы.

В качестве другого примера синхронизации сигналов можно взять схему из разд. 8.31, в которой для получения превосходного синусоидального сигнала используется точный сигнал «60 Гц», сформированный цифровым способом (в действительности его частота находится где-то между 50 и 70 Гц). Для того чтобы преобразовать прямоугольное колебание в синусоидальное мы использовали в этой схеме 6-звенный фильтр нижних частот Баттерворта. Здесь заманчиво было бы использовать ИМС ГУН с синусоидальным выходным сигналом (например, ИМС 8038), работающей синфазно с точным прямоугольным сигналом. Это гарантировало бы постоянную амплитуду синусоидального сигнала, обеспечило широкий диапазон изменения частоты и позволило бы избавиться от «дрожания» на выходе умножителя частоты.

LC-генератор. На рис. 9.81 показан пример системы ФАПЧ, в которой использован LC-генератор и цифровое сравнение по фазе на более низкой частоте.



Рис. 9.81. ФАПЧ с варакторной настройкой.


При этом потребовался стабильный прецизионный источник частоты 14,4 МГц, работающий синхронно с задающим генератором 10 МГц. Варактор (настроечный диод, см. разд. 5.18) осуществляет точную настройку LC-генератора на полевом транзисторе в соответствии с выходным сигналом фазового детектора типа 2 (`НС4046). Обратите внимание на то, что диапазон настройки варактора 18–30 пФ (от 5 до 1 В соответственно) обеспечивает изменение параллельной емкости LC-цепи в пределах 2 пФ (от 8,2 до 10 пФ), что дает диапазон настройки ±0,5 % частоты генератора. Мы намеренно сделали диапазон настройки узким для того, чтобы обеспечить хорошую стабильность генератора.

Частоты опорного и выходного сигналов с помощью цифровых средств делятся до частоты 400 кГц, на которой фазовый детектор работает лучше. Заметьте, что для преобразования синусоидального сигнала в сигнал с логическими уровнями используется вентиль типа `НС со смещением на логическом пороге с помощью резистора обратной связи большого номинала. Обратите внимание также на выходную ступень обычного эмиттерного повторителя (с ограничением по току), предназначенную для работы на 50-омный кабель, как показано на рис. 9.42. При настройке схемы ферритовый сердечник генератора подстраивается до получения полного размаха на выходе фильтра фазового детектора.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже