Читаем Искусство схемотехники. Том 2 (Изд.4-е) полностью

Диаграмма на рис. 8.1, а показывает диапазоны напряжений, которые соответствуют двум логическим состояниям (ВЫСОКИЙ и НИЗКИЙ) для самых популярных семейств цифровой логики. Для каждого логического семейства необходимо определить допустимые значения как входных, так и выходных напряжений, соответствующих состояниям ВЫСОКИЙ и НИЗКИЙ. Закрашенная площадь выше линии показывает допустимый диапазон выходных напряжений, при котором гарантируются логические состояния НИЗКИЙ и ВЫСОКИЙ без ошибок, с двумя стрелками, указывающими типовые выходные значения (НИЗКИЙ и ВЫСОКИЙ), встречающиеся на практике. Закрашенная площадь ниже линии показывает диапазон входных напряжений, гарантирующий представление как НИЗКИЙ или ВЫСОКИЙ, со стрелкой, указывающей типовое напряжение логического переключения, т. е. линию, разделяющую уровни НИЗКИЙ и ВЫСОКИЙ. Во всех случаях логическое состояние ВЫСОКИЙ более положительно, чем логическое НИЗКИЙ.

Значения «минимальный», «типовой» и «максимальный» в электронных спецификациях требуют нескольких слов для пояснения. Наиболее просто, изготовитель гарантирует, что компоненты будут попадать в диапазон минимум-максимум с наибольшей вероятностью к «типовому». Это означает для типовых спецификаций, которые вы используете при проектировании схем, что эти схемы должны работать надежно внутри диапазона, задаваемого минимумом и максимумом. В частности, хорошо спроектированная схема должна функционировать при всех возможных комбинациях минимальных и максимальных значений (даже на самый плохой случай).



Рис. 8.1, а



8.03. Числовые коды

В большинстве случаев рассмотренные выше условия, которые могут быть представлены цифровыми уровнями, просты и наглядны. Более сложный и интересный вопрос заключается в том, как с помощью цифровых уровней представить часть числа.

Десятичное (с основанием 10) число представляет собой строчку из цифр и (при этом) подразумевается, что они должны быть умножены на последовательные степени числа 10 для образования индивидуальных произведений, а затем вместе сложены. Например, 137,06 = 1·102 + 3·101 + 7·100 + 0·10-1 + 6·10-2. Для записи числа требуется десять символов (от 0 до 9), а степень числа 10, на которую должна быть умножена цифра, определяется ее положением по отношению к десятичной запятой. Если мы хотим представить число с помощью только двух символов (0 и 1), то такая система счисления будет называться двоичной или системой с основанием 2. В этом случае каждая 1 или 0 будет умножаться на последовательные степени числа 2. Например,

11012 = 1·23 + 1·22 + 0·21 + 1·20 = 1310.

Отдельные «единицы» и «нули» в записи, представляющей двоичное число, называются «битами» (от слов binary digits — двоичный разряд). Индекс (записываемый всегда по основанию 10) указывает, какая используется система счисления. Он часто бывает нужным для того, чтобы избежать путаницы, так как все символы выглядят одинаково. Только что описанным методом мы преобразовали число из двоичной формы в десятичную. Для того чтобы произвести обратное преобразование, десятичное число нужно последовательно делить на 2, каждый раз записывая остаток. Для преобразования числа 1310 в двоичное нужно произвести следующие операции: 13/2 = 6, остаток 1; 6/2 = 3, остаток 0; 3/2 = 1, остаток 1; 1/2 = 0, остаток 1; это дает 1310 = 11012. Заметим, что ответ образуется, начиная с младшего значащего разряда (МЗР).

Шестнадцатеричное представление чисел. Для описания систем только с двумя состояниями естественно применять двоичные числа. Однако, как будет показано ниже, это не единственный способ.

Поскольку двоичные числа имеют большую длину, для их записи используется шестнадцатеричное (с основанием 16) представление. Для записи двоичного числа в шестнадцатеричном коде его разбивают на группы по 4 бит, каждая из которых может принимать значения от 0 до 15. Поскольку для обозначения каждой шестнадцатеричной позиции мы хотим использовать один символ, величины 10–15 будем обозначать буквами латинского алфавита от А до F:

70710 = 10110000112 = (10110000112) = 2С316.

Шестнадцатеричное представление лучшим образом соответствует байтовой (1 байт = 8 бит) структуре ЭВМ, которая чаще всего реализуется в виде 16- или 32-разрядных машинных «слов», при этом каждое слово состоит из 2 или 4 байтов. Буквенно-цифровые знаки (буквы, цифры или символы) представляются в виде одного байта. Таким образом, каждый байт в шестнадцатеричной системе состоит из двух шестнадцатеричных цифр, 16-разрядное машинное слово из 4-х шестнадцатеричных цифр и т. д.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже