Читаем Искусство схемотехники. Том 2 [Изд.4-е] полностью

Стоит отметить несколько моментов: (а) наша простая модель дает нам только нижнюю границу фактического значения времени установления в реальной схеме; всегда нужно проверить еще ограниченное скоростью нарастания время нарастания, которое может быть определяющим; (б) даже если скорость нарастания не создает проблем, время установления может быть много больше, чем в нашей идеализированной «однополюсной» модели; это зависит от схемы компенсации ОУ и запаса по фазе; (в) ОУ устанавливается тем быстрее, чем лучше применяемая схема частотной компенсации обеспечивает зависимость сдвига фазы от частоты в разомкнутой петле в виде прямой линии при логарифмическом масштабе (например, ОР-42, рис. 7.12);



Рис. 7.12.Частотные зависимости усиления и сдвига фазы ОР-42.


ОУ, имеющие колебания на фазово-частотной характеристике, более склонны к выбросам и пульсациям, вроде тех, что показаны на графике рис. 7.10; (г) быстрое установление с точностью до 1 % не обязательно гарантирует быстрое установление в пределах 0,1 %, может существовать «длинный хвост» (рис. 7.13); (д) прямая подстановка в реальный случай приводимого изготовителем значения времени установления не всегда пригодна.

В табл. 7.3 приведен ряд быстродействующих ОУ для применений, требующих большого значения fср, высокой скорости нарастания и малого времени установления.




Рис. 7.13.а — по мере подхода входной погрешности к зоне 60 мВ скорость нарастания уменьшается; б — установка с высокой точностью может длиться удивительно долго.


Погрешность коэффициента усиления. Существует еще одна погрешность, причиной которой является конечное значение коэффициента усиления без ОС, а именно: погрешность коэффициента усиления при замкнутой ОС из-за конечного петлевого усиления. В гл. 3 мы вывели выражение для коэффициента усиления реальный усилителя с замкнутой петлей ОС, КА/(1 + АВ), где А — коэффициент усиления без ОС, а В — «усиление» цепи обратной связи. Можно было бы предположить, что величина коэффициента усиления ОУ без обратной связи А >= 100 дБ является вполне достаточной, но если мы попробуем сконструировать сверхпрецизионную схему, то здесь нас ожидает сюрприз. Из предыдущего выражения для коэффициента усиления нетрудно показать, что «погрешность усиления», определяемая как

σK = (KидеальныйKреальный)/Kидеальный

в точности равна 1/(A + АВ) и может изменяться в диапазоне от 0 при А до 1 (100 %) при А = 0.

Упражнение 7.2. Выведите только что приведенное выражение для погрешности коэффициента усиления.


Результирующая величина частотно-зависимой погрешности коэффициента усиления далека от того, чтобы ей можно было пренебречь. Например, ОУ 411, у которого коэффициент усиления без ОС на низкой частоте составляет 106 дБ, будет давать погрешность усиления 0,5 % при включении его в схему с расчетным значением коэффициента усиления с замкнутой ОС 1000. Еще хуже то, что коэффициент усиления без ОС начиная с частоты 20 Гц падает со скоростью 6 дБ/октава, так что наш усилитель имел бы на частоте 500 Гц погрешность коэффициента усиления в 10 %! На рис. 7.14 даны кривые зависимости погрешности коэффициента усиления от частоты при значениях коэффициента усиления с ОС, равных 100 и 1000, для ОР-77, имеющего на низкой частоте исключительно высокий коэффициент усиления 140 дБ. Отсюда становится очевидным, что для сохранения точности даже на средних частотах необходимо иметь достаточно большой коэффициент усиления и высокое значение fcp.



Рис. 7.14.Погрешность усиления ОР-77.


Приведенные графики мы построили, используя данные в паспорте кривые частотной зависимости коэффициента усиления без ОС. Даже в том случае, если в спецификации на применяемый вами ОУ дан указанный график, лучше всего идти в обратном направлении — от паспортных значений fcp и коэффициента усиления по постоянному току, вычисляя величину коэффициента усиления без ОС на интересующей нас частоте, а отсюда и погрешность усиления как функцию частоты. Эта процедура приводит к следующему выражению:


где В, как обычно, — коэффициент передачи цепи обратной связи. Разумеется, в некоторых схемах, таких как фильтры, В может также зависеть от частоты.

Упражнение 7.3. Выведите представленное выше выражение для δκ(f).


Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника