Дифференциальные усилители с преобразованием проводимости (в цепи обратной связи).
В этих схемах, представителями которых являются LM363, AD521 и выполненный на ПТ с p-n-переходом АМР-05, большое значение КОСС достигается без согласования внешних сопротивлений. Фактически только коэффициент усиления устанавливается отношением пары навесных резисторов. На рис. 7.37 показана функциональная схема АМР-01. В ней используются две пары дифференциальных усилителей — преобразователей проводимости с одним навесным резистором, устанавливающим в каждом случае коэффициент усиления. Одна пара усилителей управляется входным сигналом, а другая — выходным сигналом, отсчитываемым относительно входа опорного напряжения. В АМР-05 используются ПТ для поддержания низкого уровня входных токов, а в АМР-01 используются биполярные транзисторы для достижения малого напряжения сдвига и малого дрейфа (табл. 7.5). В прецизионной схемотехнике исключительно полезными могут быть методы с использованием микропроцессорной обработки; см. разд. 13.24.
Рис. 7.37.
Функциональная схема интегральной схемы измерительного усилителя АМР-01.Шумы усилителей
Почти в любой области измерений значение предельно различимого слабого сигнала определяется шумом-мешающим сигналом, который забивает полезный сигнал. Даже если измеряемая величина и не мала, шум снижает точность измерения. Некоторые виды шума неустранимы принципиально (например, флуктуации измеряемой величины), и с ними можно бороться только методами усреднения сигнала и сужения полосы, которые мы обсудим в гл. 15
. Другие виды шума (например, помехи на радиочастоте и «петли заземления») можно уменьшить или исключить с помощью разных приемов, включая фильтрацию, а также тщательное продумывание расположения проводов и элементов схемы. И наконец, существует шум, который возникает в процессе усиления, и его можно уменьшить применением малошумящих усилителей. Хотя техника осреднения сигнала часто применяется для извлечения сигнала, маскируемого шумом, имеет смысл для начала убедиться, что система свободна от всех устранимых помех и обладает наименьшим, практически возможным шумом усилителя.Мы начнем с разговора об источниках происхождения и характеристиках различных видов шумов, от которых страдают электронные схемы. Затем мы займемся обсуждением шумов биполярных и полевых транзисторов, включая методы проектирования малошумящих схем при заданном источнике питания. Приведем несколько конструктивных примеров. После небольшого обсуждения шумов дифференциального усилителя и усилителя с обратной связью мы посвятим заключительный раздел обсуждению надлежащего заземления и экранирования, а также исключению помех и наводок (см. также разд. 13.24
, посвященный методам моделирования аналоговых схем).
7.11. Происхождение и виды шумов
Термин «шум» применяется ко всему тому, что маскирует полезный сигнал, поэтому шумом может оказаться какой-нибудь другой сигнал («помеха»); но чаще всего этот термин означает «случайный» шум физической (чаще всего тепловой) природы. Шум характеризуется своим частотным спектром, распределением амплитуд и источником (происхождением). Мы назовем основных «возмутителей спокойствия».
Джонсоновский шум.
Любой резистор на плате генерирует на своих выводах некоторое напряжение шума, известное как «шум Джонсона» (тепловой шум). У него горизонтальный частотный спектр, т. е. одинаковая мощность шума на всех частотах (разумеется, до некоторого предела). Шум с горизонтальным спектром называют «белым шумом». Реальное напряжение шума в незамкнутой цепи, порожденное сопротивлением R, находящимся при температуре Т, выражается формулойUш. эфф
= UшR = (4kTRB)1/2,где k
— постоянная Больцмана, Т — абсолютная температура в Кельвинах (К = °С + 273,16), B — полоса частот в Гц.Таким образом, Uш. эфф
— это то, что получится на выходе совершенно бесшумного фильтра с полосой пропускания В, если подать на его вход напряжение, порожденное резистором при температуре Т. При комнатной температуре (68 °F = 20°С = 293К)4kТ
= 1,62·10-20В2/(ГцОм),(4kTR
)1/2 = 1,27·10-10R1/2 В/Гц1/2 = 1,27·10-4R1/2 В/Гц1/2.Например, резистор на 10 кОм при комнатной температуре имеет среднеквадратичное напряжение шума в разомкнутой цепи порядка 1,3 мкВ, измеренное в полосе 10 кГц (измерять можно, например, подсоединив резистор ко входу высококачественного усилителя и наблюдая напряжение на выходе усилителя вольтметром). Сопротивление источника этого напряжения шума равно просто R
. На рис. 7.38 дан график простой зависимости плотности напряжения шума Джонсона (среднеквадратичное напряжение на корень квадратный из ширины полосы) от сопротивления источника.
Рис. 7.38.
Зависимость напряжения теплового шума от сопротивления.