Выпускаются эти датчики с начальной точностью ±1 °C и имеют внешнюю подстройку. Простой калибровкой можно обычно улучшить его точность до ±0,5 °C максимально в области —55 °C — +125 °C. После подстройки точность выхода должна быть 0,1 °C при тестовой температуре и с бюджетом точности на краях ±0,5 °C (рис. 15.7).
Рис. 15.7.
LM35 также обеспечивает наклон зависимости выходного напряжения от температуры +10 мВ/°С, но он ведет себя скорее как 3-полюсный опорный источник (а не как 2-клеммный зенеровский диод), в котором питание (+4 ÷ +30 В) подается на третий зажим; внутреннее смещение у него такое, что выходное напряжение равно 0 В при 0 °C. При работе вблизи или ниже 0 °C следует использовать понижающий резистор, как показано на рис. 15.6,
Родственное им устройство LM34A работает также, но считывание осуществляется по шкале Фаренгейта (0 В при 0°Ф). Существуют и другие ИС-датчики температуры, например АО590 — 2-клеммное устройство, работающее как генератор постоянного тока, у которого ток в микроамперах пропорционален абсолютной температуре; например, при 25 °C (298,2 К) он ведет себя как стабилизатор тока на 298,2 мкА (±0,5 мкА). Точность, достигаемая этим простым прибором, равна 1 °C (при наилучшей градуировке) в интервале от —55 до +150 °C. Что особенно привлекает в них, так это простота внешних электрических соединений.
Пластиковый вариант AD592 имеет сравнимые характеристики в меньшей температурной области (-25 °C до 105 °C). ИС источника тока LM334 (см.
Кварцевые термометры.
Изменение резонансной частоты кристалла кварца может быть использовано для создания точного, с хорошей воспроизводимостью, термометра. Хотя реальные генераторы на кристалле кварца обычно имеют самый низкий температурный коэффициент, можно подобрать сечение кристалла, обеспечивающее большой коэффициент, и воспользоваться высокой точностью частотных измерений. Хорошим образцом такого датчика является прибор фирмы Newlett-Packard 2804А — термометр со встроенным микропроцессором, имеющий абсолютную точность 40 мкград в интервале от —50 до +150 °C (при расширении интервала точность уменьшается) и температурноеПирометры и термографы.
Интересен метод «бесконтактного» измерения температуры с помощью классического пирометра. Метод заключается в том, что наблюдатель, рассматривая через зрительную трубу вроде телескопа раскаленную поверхность предмета, сравнивает цвет его свечения с цветом нити накала внутри пирометра. При этом наблюдатель подстраивает ток нити накала так, чтобы ее яркость сравнялась с яркостью объекта наблюдения (причем оба рассматриваются через красный светофильтр), и считывает температуру. Этот метод удобен для измерения температуры очень горячих объектов в окислительной или в восстановительной газовой среде, где невозможно использование термопар. Обычные оптические пирометры имеют интервал измеряемых температур от 750 до 3000 °C, точность около 4 °C для нижней части интервала температур и около 20 °C — для верхнего края интервала.Появление хороших детекторов инфракрасного излучения позволило использовать этот метод измерений и для более низких температур вплоть до обычных. Например, фирма Omega выпускает ряд инфракрасных пирометров с цифровым считыванием в области температур от —30 до +5400 °C. Измеряя интенсивность инфракрасного излучения, иногда с определенными длинами волн, вы можете определять с хорошей точностью температуру удаленных предметов. Такая «термография» с недавнего времени стала популярной в совершенно различных областях: в медицине для диагностики опухолей или в энергетике, например термография вашего дома покажет вам, где транжирится энергия.
Низкотемпературные измерения.
Особое место занимает проблема точного измерения температуры криогенных (очень холодных) систем. Задача сводится к выяснению вопроса, насколько температура близка к абсолютному нулю (0 К = = —273,15 °C). Здесь имеются два пути: измерение сопротивления обычного углеродсодержащего резистора, которое при низких температурах резко возрастает, и измерение парамагнитных свойств некоторых солей. Эти вопросы касаются специальной области измерительной техники и здесь рассматриваться не будут.