Рис. 15.11.
Наиболее эффективные фотокатодные материалы имеют квантовый выход, превышающий 25 %, и благодаря большому усилению, обеспечиваемому динодами, легко фиксируются отдельные фотоэлектрические акты. Если световой поток очень мал, то сигналы после ФЭУ (фотоэлектронного умножителя) подаются на импульсный усилитель, интегрирующий заряд, дискриминатор (см. подробнее рис. 13.60) и счетчик. При больших световых потоках количество фотоэлектронов становится столь большим, что анодный ток фиксируется как макроскопическая величина. ФЭУ имеют чувствительность порядка 1 А на 1 мкВт, а максимальный анодный ток ФЭУ не должен превышать 1 мА. Таким образом, число фотонов практически ограничивается величиной около 1 млн/с, что при грубой оценке соответствует падающей мощности 2·10-12
Вт!Обычно выпускаемые электронные приборы работают в режиме как счета импульсов, так и измерения тока на выходе. Например, «квантовый фотометр» фирмы РАР с встроенным источником высокого напряжения работает в обоих режимах. Он имеет 11 диапазонов для счета импульсов (полная шкала от 10 имп./с до 106
имп./с) и 11 диапазонов считывания анодного тока (полная шкала 10 нА-1 мА).Даже в условиях полной темноты на аноде будет небольшой ток. Он вызывается тепловыми электронами, исходящими из фотокатода и динодов, и его можно уменьшить, если охлаждать ФЭУ до температуры —25 °C и ниже. Обычно темновые токи для светочувствительного катода ФЭУ из щелочноземельных металлов имеют величину примерно 30 ед./(с·см2
площади катода) при комнатной температуре. Охлажденный ФЭУ с небольшим катодом имеет темновой ток меньше единицы в секунду. Следует помнить, что ФЭУ с включенным напряжением питания не должен подвергаться воздействию обычного света; для ФЭУ, в окно которого попал дневной свет даже при отключенном питании, требуется 24 ч или более, чтобы он «остыл» и его темновой ток вернулся к нормальному уровню. В некоторых применениях (например, флуоресцентные измерения) ФЭУ могут известное время подвергаться воздействию ярких вспышек света. В этом случае вы можете минимизировать время восстановления при перегрузке, блокируя ускоряющее напряжение на первых нескольких динодах во время вспышки (некоторые изготовители предоставляют эту возможность соответствующим сочетанием ФЭУ/гнездо).По сравнению с фотодиодами ФЭУ обладают более высоким квантовым выходом, сохраняя быстродействие (время нарастания обычно равно 2 нс). Однако они громоздки и требуют стабилизированного источника высокого напряжения, поскольку усиление ФЭУ возрастает экспоненциально в зависимости от приложенного напряжения.
Особое значение приобретают ФЭУ при работе с чрезвычайно малыми световыми потоками. Они используются при токах анода порядка микроампера или менее, следовательно, ФЭУ легко «видят» свет, который вы не можете видеть. Фотоэлектронные умножители применяют не только для непосредственного детектирования света, как в астрономии (фотометрия) и биологии (биолюминесценция, флуоресценция), но и в схемах совпадений со сцинтилляторами типа детекторов частиц и детекторов рентгеновского и гамма-излучения, которые будут рассматриваться в
ПЗС, усилители изображения, УКМ, УУКМ и диссекторы изображения
. С помощью некоторых новейших искусных методов можно получитьКлючевым узлом во всех этих устройствах является электронно-оптический усилитель изображения, на выходе которого формируется яркая реплика входного изображения. Считывание осуществляется либо с помощью обычного видикона (ТВ-камеры) с кремниевой мишенью, либо с помощью матрицы ПЗС. В видиконе изображение, спроецированное на светочувствительную двумерную мишень, считывается сканированием электронного пучка, а в ПЗС-путем сдвига «изображения» по типу аналогового регистра сдвига. Чувствительность телевизионной камеры много ниже уровня отдельных фотонов — это двумерный аналог фотодиода. Поместив перед камерой трубку электронно-оптического усилителя изображения, вы совершите чудо. Схематично этот процесс изображен на рис. 15.12.