дисперсия выборочная: если имеется выборка
дисперсия: характеристика разброса случайной величины; если случайная величина
доверительный интервал: оцениваемый интервал, в котором может находиться неизвестный параметр. Например, при наличии наблюдаемого множества данных
зависимая переменная (переменная отклика): переменная, которая представляет основной интерес, которую мы желаем спрогнозировать или объяснить;
зависимые события: когда вероятность одного события зависит от наступления другого;
закон больших чисел: общее название нескольких теорем о сходимости средних для последовательности случайных величин к истинному математическому ожиданию. На практике это означает, что выборочное среднее близко к среднему значению всей генеральной совокупности;
иерархическое моделирование: в байесовском анализе – когда параметры, определяющие число элементов (например, районов или школ), сами считаются взятыми из общего априорного распределения. Это приводит к уменьшению оценок параметров для отдельных элементов в сторону общего среднего;
индуктивное поведение: сделанное в 1930-х годах предложение Ежи Неймана и Эгона Пирсона по проверке гипотез в терминах принятия решений. От него остались идеи размера и мощности критерия, а также ошибок первого и второго рода;
индукция (индуктивное умозаключение): построение обобщающего вывода на основании частных примеров;
интерквартильный размах: мера разброса выборки или распределения; конкретно – разность между третьим и первым квартилем, то есть между 75-м и 25-м процентилем;
искусственный интеллект (ИИ): компьютерные программы, предназначенные для выполнения задачи, обычно связываемой с человеческими способностями;
исследование «случай – контроль»: ретроспективное исследование, в котором люди с заболеванием или с интересующей нас характеристикой (случаи) сопоставляются с одним или несколькими людьми, не имеющими заболевания (контрольные экземпляры), и сравниваются истории этих групп – чтобы увидеть, дают ли воздействия систематическую разницу между группами. Такая схема может оценивать только относительные риски, связанные с воздействиями;
калибровка: требование, чтобы наблюдаемые частоты событий соответствовали вероятностным прогнозам. Например, если вероятность какого-нибудь события 0,7, то оно должно происходить примерно в 70 % случаев;
качественная (категорийная) переменная: переменная, принимающая два или несколько дискретных значений, которые могут или не могут быть упорядоченными;
квартиль (генеральной совокупности): 25-й, 50-й и 75-й процентили;
комбинированные признаки: когда несколько объясняющих переменных соединяются и производят эффект, отличный от ожидаемого при их отдельном воздействии;
конструирование признаков: в машинном обучении процесс уменьшения размерности входных переменных с созданием сводных характеристик, которые содержат информацию о данных в целом;
контрольная группа: множество людей, которые не подпадали под интересующее нас воздействие;
контрольные граничные значения: заранее определенные ограничения для случайной величины, используемые при контроле качества для отслеживания отклонений от предполагаемых стандартов; например, могут отображаться на воронкообразном графике;
контрфактуальный: относящийся к сценариям вида «что, если», где рассматривается альтернативная история событий;