множественная линейная регрессия: предположим, что для каждого отклика
где коэффициенты
многоуровневая регрессия и постстратификация (MRP): современный способ создания выборки, при котором из многих областей берутся достаточно небольшие количества респондентов с похожими характеристиками. Затем строится регрессионная модель для откликов в соответствии с демографическими факторами, что допускает дополнительный разброс между областями. Знание демографии для всех областей позволяет делать прогнозы на местном и национальном уровне с соответствующей неопределенностью;
множественная проверка гипотез: выполнение сразу нескольких проверок, что увеличивает вероятность получения хотя бы одного ложноположительного результата (ошибка первого рода);
мода (вероятностного распределения): для дискретного распределения – самое вероятное значение, для непрерывного – точка максимума плотности;
мода (выборки): значение, которое встречается в выборке чаще всего;
мощность критерия: вероятность правильного отклонения нулевой гипотезы при условии справедливости альтернативной гипотезы. Равна 1 – β, где β – вероятность ошибки второго рода для статистического критерия;
мудрость толпы: идея, согласно которой характеристика, определяемая групповым мнением, ближе к истине, чем предположения большинства отдельных людей;
наука о данных: изучение и применение методов получения информации из данных, включая построение алгоритмов для прогнозов. Традиционная статистика – часть науки о данных, в которую также входят кодирование и управление данными;
независимая (предикторная) переменная: переменная, которая фиксируется посредством проекта или наблюдения, чья связь с зависимой переменной может представлять интерес;
независимые события: события
непрерывная случайная величина: случайная величина
нормальное распределение: случайная величина имеет нормальное (гауссовское) распределение со средним μ и дисперсией σ2, если ее плотность имеет вид
Математическое ожидание
Стандартизованная случайная величина
нулевая гипотеза: принимаемое по умолчанию теоретическое предположение, как правило, означающее отсутствие эффекта или результата, проверяемое с помощью P-значения. Обычно обозначается
обратная причинная зависимость: когда связь между двумя переменными изначально кажется причинно-следственной, а на деле причинно-следственные отношения оказываются обратными. Например, у людей, которые не употребляют алкоголь, показатели здоровья хуже, чем у умеренно пьющих, однако как минимум частично это объясняется тем, что некоторые ныне непьющие бросили пить из-за ухудшения здоровья;
обучение без учителя: определение классов на основании случаев без подтвержденного состава с использованием какой-либо формы процедуры кластеризации;