подтверждающие исследования и анализы: строгие исследования, в идеале выполняющиеся с заранее утвержденным протоколом в целях подтверждения или опровержения гипотез, выдвинутых в ходе «поисковых» исследований или анализов;
поисковые исследования и анализы: первоначальные гибкие исследования, которые допускают адаптивные изменения в планах и анализе в целях поиска многообещающих результатов и предназначены для того, чтобы генерировать гипотезы, которые будут проверяться последующими подтверждающими исследованиями;
поперечное исследование: исследование, в котором анализ основан исключительно на текущем состоянии участников, без какого-либо последующего наблюдения в течение долгого времени;
поправка/стратификация: включение в регрессионную модель известных возмущающих факторов, которые не представляют прямого интереса, но позволяют провести более сбалансированное сравнение между группами; при этом можно надеяться, что оцененные эффекты, связанные с объясняющими переменными, должны быть ближе к причинной связи;
последовательное тестирование: когда какая-либо статистическая проверка повторно проводится на накапливающихся данных, что повышает вероятность появления в какой-то момент ошибки первого рода. Если процесс продолжается достаточно долго, гарантируется «значимый результат»;
правдоподобие: мера подтверждения, обеспечиваемая данными для конкретных значений параметра. Когда вероятностное распределение какой-либо случайно величины зависит от параметра, например θ, то после наблюдения данных
практическая значимость: когда какой-нибудь результат имеет реальную важность. Масштабные исследования могут давать результаты, которые статистически значимы, но не имеют практической значимости;
предсказательная аналитика: использование данных в целях создания алгоритмов для прогнозов;
проверка гипотезы: формальная процедура для оценки подтверждения гипотезы имеющимися данными. Обычно представляет собой сочетание классических фишеровских критериев для проверки нулевой гипотезы с помощью P-значения и конструкции Неймана – Пирсона, где фигурируют нулевая и альтернативная гипотезы и ошибки первого и второго рода;
проспективное когортное исследование: когда выбирается множество испытуемых, измеряются фоновые факторы, а затем за ними следят и наблюдают за соответствующими результатами. Такие исследования – продолжительные и дорогостоящие и могут не идентифицировать многие редкие события;
процентиль (выборки): если взять упорядоченный набор данных (вариационный ряд), то, например, 70-й процентиль – это такая величина, что 70 % наблюдений будут меньше ее. В частности, медиана – это 50-й процентиль. При необходимости используется интерполяция;
процентиль (генеральной совокупности): например, 70-й процентиль – это такая величина, что с вероятностью 70 % ваше случайное наблюдение будет меньше ее;
Пуассона распределение: случайная величина
размах (выборки): разность между максимальным и минимальным значением, то есть
размер критерия: величина ошибки первого рода в каком-либо статистическом критерии, обычно обозначается α;
рандомизированное контролируемое исследование (РКИ): эксперимент, в котором люди или иные объекты случайным образом распределяются по различным вмешательствам, и такая случайность гарантирует, что группы будут сбалансированы в отношении известных и неизвестных факторов. Если в дальнейшем группы демонстрируют различные результаты, то либо вмешательство дало эффект, либо произошло какое-то удивительное событие, вероятность которого выражается через P-значение;
распределение выборки: закономерность в наборе числовых или категорийных наблюдений. Также именуется эмпирическим распределением, или распределением данных;
распределение генеральной совокупности (распределение популяции): когда она реально существует – закономерность, описывающая потенциальные наблюдения во всей популяции. Также так называется распределение порождающей случайной величины;
регрессия к среднему (регресс к среднему): когда в процессе естественных изменений наблюдается возврат от очень больших или малых наблюдений к более умеренным. Это происходит в силу того, что первоначальные экстремальные величины получались случайным образом, поэтому повторение в той же степени маловероятно;
регрессия Кокса: см. отношение рисков;