Я едва ли знаю что-либо, способное воздействовать на воображение так, как чудесная форма космического порядка, выраженная «Законом Распределения Ошибок». Если бы древние греки знали этот закон, они бы персонифицировали и обожествили его. Он безмятежно царит среди самой дикой сумятицы. Чем больше толпа, чем больше видимая анархия, тем совершеннее его владычество. Это высший закон среди неразумности. Всякий раз, когда мы берем множество хаотичных элементов и расставляем их по величине, появляется неожиданная и доселе скрытая прекраснейшая закономерность.
Он был прав – это действительно выдающийся закон природы.
Вся эта теория хорошо помогает при попытке что-то узнать о распределении статистик, основанных на данных, взятых из известных совокупностей, но не это нас больше всего интересует. Мы должны найти способ развернуть данный процесс: то есть вместо того чтобы по известным исходным распределениям говорить что-то о возможных выборках, попробовать по одной выборке что-то сказать о возможном распределении. Это процесс индуктивного вывода, описанный в главе 3.
Предположим, у меня есть монета, и я спрашиваю вас, с какой вероятностью выпадет орел. Вы радостно отвечаете «50 процентов» или нечто подобное. Затем я подбрасываю ее и накрываю, пока никто не увидел результат, и снова спрашиваю, с какой вероятностью будет орел. Если вы типичный человек, то, как показывает мой опыт, после паузы, скорее всего, довольно неохотно скажете: «50 процентов». Потом я смотрю на монету, не показывая вам, и повторяю вопрос еще раз. И снова, если вы относитесь к большинству, вы бормочете: «50 процентов».
Это простое упражнение показывает главное различие между двумя типами неопределенности: стохастической неопределенностью[174]
Статистика используется при наличии эпистемической неопределенности в отношении какой-то величины. Например, мы проводим опрос, когда не знаем истинной доли людей в популяции, считающих себя религиозными, или фармакологическое испытание, когда не знаем истинного среднего эффекта какого-то препарата. Как мы уже говорили, эти фиксированные, но неизвестные величины называются параметрами и часто обозначаются греческими буквами[176]. Как и в примере с подбрасыванием монеты,
На этой фундаментальной идее построена процедура получения интервала неопределенности вокруг нашей оценки или погрешности, включающая три этапа.
1. Мы используем теорию вероятностей, чтобы для конкретных параметров генеральной совокупности получить интервал, в котором наблюдаемая статистика будет лежать с вероятностью 95 %. На рис. 9.2 такие 95-процентные интервалы прогнозирования изображены в виде внутренней воронки.
2. Затем мы наблюдаем конкретную статистику.
3. И наконец (и это самое трудное) определяем диапазон возможных параметров генеральной совокупности, для которых наша статистика попадает в 95-процентные интервалы прогнозирования. Этот диапазон мы называем «95-процентным доверительным интервалом». Он включает величину 95 %, поскольку при большом числе повторений 95 % таких интервалов будут содержать истинное значение параметра[177].