Будем считать, что числитель равен единице, а вероятность в знаменателе можно вычислить как 1 / 72 000[223]
. Тогда отношение правдоподобия составит 72 000, что, согласно стандартам из табл. 11.2, означает «очень сильное подтверждение», что архиепископ жульничает. Но должны ли мы делать этот вывод? Как говорит теорема Байеса, апостериорные шансы равны произведению отношения правдоподобия на априорные шансы. Кажется разумным предположить, что (по крайней мере, пока мы не начали играть) шансы на то, что архиепископ не жульничает, крайне высоки, возможно, миллион против 1, учитывая его высокий духовный сан[224]. Поэтому произведение таких шансов и отношения правдоподобия даст нам 72 000 / 1 000 000, то есть примерно 7 к 100, что соответствует вероятности 7/107, или 7 %, что он жульничает. Таким образом, на этом этапе мы можем себе позволить дать ему кредит доверия (чего не сделали бы по отношению к человеку, с которым, скажем, только что столкнулись в пабе). И, возможно, нам надо держать ухо востро во время игры с архиепископом!Теорема Байеса, даже если она и не разрешена в британских судах, – это научно корректный способ менять наше мнение на основании новых фактов. Ожидаемые количества делают байесовский анализ достаточно простым для несложных ситуаций, где есть всего две гипотезы, например, заболел человек или не заболел, совершил преступление или не совершил. Однако все усложняется, когда мы хотим применить эти же идеи к выводам относительно неизвестных величин, которые могут принимать целый диапазон значений, таких как параметры в статистических моделях.
Оригинальная работа преподобного Томаса Байеса, опубликованная в 1763 году, давала ответ на один очень простой вопрос: если известно, что нечто произошло или не произошло определенное количество раз, то какова вероятность, что это произойдет в следующий раз?[225]
Например, если канцелярскую кнопку подбросили 20 раз и она 15 раз упала острием вверх, а 5 раз – острием вниз, то чему равна вероятность ее падения острием вверх в следующий раз? Возможно, вы подумаете, что ответ очевиден: 15 / 20 = 75 %. Однако ответ преподобного был бы другим – 16 / 22 (73 %). Как бы он к нему пришел?Байес использовал метафору бильярдного стола[226]
, который от вас скрыт. Предположим, на стол случайно брошен белый шар; его положение на столе отмечается линией, после чего белый шар убирают. Затем на стол случайным образом бросают несколько красных шаров, но вам сообщают только их число слева и справа от линии. Как думаете, где может проходить линия и чему, по-вашему, равна вероятность того, что следующий красный шар будет слева от линии?Допустим, после того как было брошено пять красных шаров, вам сказали, что три шара приземлились слева от линии, где лежал белый шар, а три – справа, как на рис. 11.4(a). Байес показал, что наше представление о положении линии должно описываться вероятностным распределением, представленным на рис. 11.4(b), – математические рассуждения тут довольно сложные и приведены в примечании[227]
. Оценка положения пунктирной линии, указывающей, куда упал белый шар, – 3/7 длины стола, что является средним (математическим ожиданием) для этого распределения.Рис. 11.4
«Бильярдный» стол Байеса. (a) На стол бросают белый шар и его конечное положение отмечают пунктирной линией. Затем на стол бросают пять красных шаров – их положение обозначено темными точками. (b) Наблюдатель не видит стола, но ему говорят, что два красных шара приземлились слева от линии, а три – справа. Кривая отображает вероятностное распределение положения пунктирной линии (белого шара) для наблюдателя, наложенное на стол. Среднее значение кривой равно 3/7, и это также текущая вероятность для наблюдателя, что следующий красный шар окажется слева от линии
Значение 3/7 может показаться странным, поскольку интуитивная оценка – 2/5 (доля красных шаров, оказавшихся слева от линии)[228]
. Однако Байес показал, что в такой ситуации следует оценивать положение по формулеколичество красных шаров, лежащих слева, +1 / общее количество красных шаров +2.