Читаем Искусство статистики. Как находить ответы в данных полностью

Байесовский ответ на эту проблему – многоуровневая регрессия и постстратификация (MRP). Основная идея – разбить всех потенциальных избирателей на маленькие «ячейки», состоящие из однородной группы людей, например жителей одной области, людей одного возраста, пола, сходных политических взглядов и прочих измеримых характеристик. Для оценки числа людей в каждой ячейке можно использовать имеющиеся демографические данные; предполагается, что все ее члены голосуют за определенную партию с равной вероятностью. Проблема в том, чтобы выяснить, какова эта вероятность, когда наши неслучайные данные могут означать, что у нас в конкретной ячейке всего несколько человек, а возможно, и ни одного.

Первый шаг – построение регрессионной модели для вероятности голосования определенным образом при данных характеристиках ячейки, поэтому наша задача сводится к оцениванию коэффициентов уравнения регрессии. Но их по-прежнему слишком много для надежной оценки с помощью стандартных методов, вот тут и приходят на помощь байесовские идеи. Коэффициенты для различных областей предполагаются сходными – своего рода промежуточная точка между предположением, что они в точности одинаковы, и предположением, что они совершенно не связаны.

Можно показать, что это предположение эквивалентно тому, что все эти неизвестные величины извлечены из одного и того же априорного распределения, и это позволяет нам смещать многие отдельные, довольно неточные оценки ближе друг к другу, что в итоге приводит к более уверенным выводам, на которые не так сильно влияет несколько странных наблюдений. Сделав такие более надежные оценки поведения при голосовании внутри каждой из тысяч ячеек, можно объединить все результаты и спрогнозировать, как проголосует вся страна.

На президентских выборах в США в 2016 году опросы, основанные на многоуровневой регрессии и постстратификации, правильно определили победителя в 50 случаях из 51 (50 штатов и округ Колумбия), исходя из ответов всего 9485 человек за несколько недель до выборов, и ошиблись только для Мичигана. Аналогичные хорошие прогнозы были сделаны и для выборов 2017 года в Соединенном Королевстве, где компания YouGov опросила 50 тысяч человек, не заботясь о репрезентативности выборки, а затем с помощью метода MRP предсказала подвешенный парламент[231], где консерваторы получат 42 % голосов, что в действительности и произошло. А вот опросы, использовавшие более традиционные методы, с треском провалились[232].

Так можем ли мы сделать пресловутый шелковый кошелек из подходящего неслучайного свиного уха? MRP не панацея – если большое количество респондентов систематически дают недостоверные ответы и тем самым не представляют свою «ячейку», то никакой сложный статистический анализ не компенсирует этой ошибки. Однако, по-видимому, байесовское моделирование полезно использовать для каждого отдельного участка голосования и, как мы увидим позже, это на удивление эффективно в экзитполах, проводимых в день голосования.

Байесовское «сглаживание» может добавить точность очень скудным данным, и такие методы все чаще применяются, например, для моделирования распространения болезней во времени и пространстве. Байесовское обучение сейчас рассматривается как фундаментальный процесс осознания человеком окружающей обстановки, когда у нас есть априорные ожидания того, что мы увидим в каком-то контексте, а далее нужно обращать внимание только на неожиданные изменения в нашем видении, которые затем используются для обновления наших текущих представлений. Эта идея лежит в основе так называемого байесовского мозга[233]. Те же самые процедуры обучения были реализованы в самоуправляемых автомобилях, которые имеют вероятностную «ментальную карту» окружающей местности, постоянно обновляющуюся по мере распознавания светофоров, людей, других машин и так далее. «По сути, робот-автомобиль “думает” о себе как о вероятностном пузырьке, путешествующем по байесовской дороге»[234].

Эти проблемы касаются оценки величин, описывающих мир, однако использование байесовских методов для оценки научных гипотез более спорно. Как и при проверке гипотез методом Неймана – Пирсона, нам сначала нужно сформулировать две конкурирующие гипотезы. Нулевая гипотеза H0 обычно означает отсутствие чего-либо, например отсутствие бозона Хиггса или эффекта от какого-то метода лечения. Альтернативная гипотеза H1 утверждает, что нечто важное существует.

Перейти на страницу:

Все книги серии МИФ. Научпоп

Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
Происхождение человека и половой отбор
Происхождение человека и половой отбор

Многие из взглядов, здесь высказанных, имеют в высшей степени умозрительный характер  и некоторые из них, без сомнения, окажутся ошибочными; но во всяком отдельном случае я приводил основания, заставившие меня предпочесть один взгляд другому. Казалось, во всяком случае, стоящим внимания испытать, насколько принцип эволюции способен пролить свет на некоторые из сложнейших задач в естественной истории человека. Ложные факты в высшей степени вредны для прогресса науки, так как они часто долго признаются истинными; но ложные взгляды, если они поддержаны некоторыми доказательствами, приносят мало вреда, потому что   каждому доставляет спасительное удовольствие доказывать, в свою очередь, их ошибочность; а когда это сделано, то один из путей к заблуждению закрывается, и часто в то же время открывается путь к истине.   Главное заключение, здесь достигнутое, и теперь усвоенное многими  натуралистами, вполне способными к здравому суждению, состоит в том, что человек произошел от некоторой менее высокоорганизованной формы. Основания, на которых покоится это утверждение, никогда не будут потрясены: близкое сходство между человеком и низшими животными  в эмбриональном развитии, а также в бесчисленных чертах строения и   телосложения, как важных, так и самых мелких, вместе с удержанными им рудиментами и ненормальными возвратами, которым он порою  подвержен, - все это факты, не подлежащие спору.  Факты эти давно были известны, но до недавнего времени они ничего нам не говорили относительно происхождения человека. Теперь, когда  мы рассматриваем их при СВЕТЕ нашего знания о целом органическом мире, в их значении невозможно ошибиться. Великий принцип эволюции устанавливается ясно и прочно, когда  эти группы фактов рассматриваются в связи с другими, каково взаимное   сродство между членами одной и той же группы, их географическое распределение в прошлом и в настоящем и их геологическая последовательность. Невозможно поверить, чтобы все эти факты лжесвидетельствовали. Каждый, кто не довольствуется, подобно дикарю, взглядом на явления природы, как на события, не связанные между собою, не будет больше в состоянии допустить, что человек есть произведение отдельного акта сотворения.

Чарльз Роберт Дарвин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература