Читаем Исследование переменных параметров Хаббла полностью

Эти неравенства соответствуют изначально принятым нами условиям. Отмеченные обстоятельства, соотношения мы определённо можем трактовать так, будто при замедленном расширении Вселенной объекты находятся к наблюдателю ближе и, соответственно, видны более яркими. Напротив, при ускоренном расширении Вселенной далёкие галактики, сверхновые видны менее яркими, чем при обычном, равномерном расширении Вселенной, и, тем более, при её замедленном расширении. Иначе говоря, пониженная яркость дальних сверхновых при таком подходе позволяет однозначно идентифицировать, определить ускоренное расширение Вселенной. На рис.11.2 для трёх разных Вселенных представлены только диаграммы Хаббла, поэтому для более детального анализа нанесём на этот рисунок дополнительные графики: времени вспышки и начальной удалённости сверхновых. Штриховые вертикальные линии соответствующего цвета помечают время вспышки самой дальней, самой старой сверхновой для каждой из рассматриваемых Вселенных – 14 млрд. лет назад.

Рис.11.3. Наблюдаемые диаграммы Хаббла, графики времени и начальных удалённостей сверхновых для Вселенных с параметрами H0, Hd и Ha.

Теперь на рисунке можно заметить отмеченную выше небольшую неточность в интерпретации пары параметров яркость-скорость (удалённость), в формулировке "тусклая, поэтому более далёкая". Правильнее всё-таки говорить "яркая, но медленная", то есть, хотя сверхновая более яркая, но движется она медленнее, чем это следует из стандартного закона Хаббла, его диаграммы. Из этого сразу же следует, что с момента вспышки в ускоренно расширяющейся Вселенной сверхновая удалилась на меньшее расстояние и, соответственно, видна более яркой, чем такая же сверхновая в равномерно или замедленно расширяющейся Вселенной. Пониженная яркость ускоренно удаляющейся сверхновой является кажущейся, поскольку вызвана тем, что она изначально находилась на большем удалении от наблюдателя. Малая скорость её удаления и кажущееся большее расстояние до наблюдателя согласно стандартному закону Хаббла вызвана её действительно меньшей скоростью за всю историю движения. А пониженная яркость вызвана её изначально большему удалению.

Действительно, сравним две сверхновые: в ускоренной и равномерной Вселенных, вспыхнувшие в один и тот же момент времени Ta= To= T12= 12 млрд. лет назад. По графикам на рис.11.3 видим, что ускоренная сверхновая в момент вспышки находилась на удалении r12 ~ 10,5 млрд. световых лет, а в момент наблюдения – на удалении R12 = 12 млрд. световых лет. Следовательно, за 12 млрд. лет сверхновая "прошла путь", равный  R12 – r12 ~ 1,5 млрд. световых лет. Соответственно, находим для сверхновой в равномерно расширяющейся Вселенной: r12=6, R12=10,5, откуда R12 – r12 ~ 4,5 млрд. световых лет. В ускоренно расширяющейся Вселенной сверхновая оказалась на большем удалении, поскольку она изначально находилась дальше, хотя и "прошла" меньший путь.

<p>1. Наблюдаемые диаграммы Хаббла</p>

Наблюдаемыми диаграммами мы называем диаграммы, построенные на основе наблюдаемых яркостей и скоростей сверхновых, которые явно зависят от времени в пути света от них. Отметим, что наблюдаемые параметры Хаббла, согласно этим диаграммам, будут отличаться от исходных, действительных параметров, изображённых на рис.11.1. На рис.11.3 каждой точке диаграмм R соответствуют значения скорости и времени, следовательно, мы можем по точкам этих графиков построить и графики H(t)=v(t)/R(t). Но можно использовать и те же таблицы данных, по которым построены эти диаграммы R(v). Правильным способом построения параметров Хаббла в этом случае является дифференциальный, согласно уравнениям:

Для построения воспользуемся линиями трендов, позволяющими заменить графические построения аналитическим, на основе уравнений этих линий, что заметно упрощает процедуру. Поскольку у нас есть уравнения R(v), используем первое выражение (11.1), найдя производную R'(v), после чего производим параметрическое построение наблюдаемых параметров H(t), используя v как параметр и учитывая, что H(t)=1/R'(t).

Рис.11.4. Наблюдаемые параметры Хаббла в трёх разных Вселенных.

Обращаем внимание: хотя исходные законы изменени параметров Хаббла разнонаправленны (возрастание, убывание, рис.11.1), наблюдаемые законы их изменения на рис.11.4 все убывающие. Формально это означает замедленное расширение Вселенной, просто с возрастающим параметром Хаббла мы наблюдаем менее быстрое замедление расширения.

<p>2. Параметр Хаббла с изгибом</p>
Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика