Читаем Исследование переменных параметров Хаббла полностью

Проведённые выше исследования, таким образом, согласуются с известным утверждением, что при монотонном изменении параметров Хаббла пониженная яркость дальних сверхновых соответствует более медленному расширению Вселенной в прошлом, то есть, её ускоренному расширению в наши дни. Иначе говоря, монотонное уменьшение или рост параметра Хаббла за время существования Вселенной приводит к соответствующим наблюдательным данным об его уменьшении или росте. Напомним, что рассмотренные монотонные параметры Хаббла условные.

Вместе с тем, пока неясно, что покажут наблюдения при "ломаном" изменении параметра Хаббла: его замедлении с последующим ростом и наоборот.

Для того чтобы выяснить, какими могут быть наблюдения Вселенной с таким ломаным параметром Хаббла, расширявшейся сначала замедленно, а затем ускоренно, вновь спроектируем ещё одну функцию изменения во времени соответствующего параметра Хаббла для некоторой условной Вселенной.

Требуемый параметр Хаббла в простейшем, условном виде скомбинируем из линейных отрезков, исходя из трёх контрольных точек. Первая – это начальное значение параметра Хаббла, вторая – точка изменения направления роста и третья – современное значение параметра.

Рис.11.5. Диаграммы Хаббла для Вселенных с H0 (штрих) и Hda. На врезке приведён параметр Хаббла Hda для условной Вселенной, расширяющейся сначала замедленно, затем ускоренно.

Точку излома установим в 8 млрд. лет от начала расширения, поскольку считается, что именно тогда началось ускоренное расширение нашей Вселенной, примерно 6 млрд. лет назад. Один из вариантов такого параметра Хаббла с изломом может иметь, например, вид, представленный на врезке на следующем рисунке. На рис.11.5 приведены диаграммы Хаббла – графики движения R(v) сверхновых в двух разных Вселенных: условной, расширяющейся с указанным параметром Хаббла Hda (замедление – ускорение), и нашей с современным параметром H0. Повторим, что все представленные на рисунке параметры – условные, подобраны по смыслу и не являются реальными данными наблюдений.

Скорость, обозначенная как Vinv ~ 1,45с – это скорость, при которой яркость дальних сверхновых изменяется с повышенной (раньше) на пониженную (позже от начала расширения). Инверсия произошла через 1,5 млрд. лет после начала расширения, что видно по графикам Tо, Tda. Точка ΔRmax – это точка, когда условное расстояние между ускоренной и равномерно удаляющейся сверхновой – максимально. Здесь это ~ 5 млрд. лет от начала расширения, скорость удаления сверхновой ~ 0,9с.

Рис.11.6. Зависимости от времени параметров Хаббла в ускоренной и равномерной Вселенной

На удалённостях ближе 12,5 млрд. световых лет сверхновые видны более тусклыми, они дальше. На ещё большей удалённости – более яркими. Этот момент времени, 12,5 млрд. лет назад для наблюдателя, на графиках является ничем не примечательной точкой, хотя в этот момент замедленное расширение сменилось ускоренным. На удалении 9 млрд. световых лет разница яркости сверхновых максимальна.

Используя рассмотренный выше алгоритм, построим по линиям трендов наблюдаемые графики изменения во времени параметров Хаббла – рис.11.6. Хотя излом, перегиб на рассмотренном параметре Хаббла выглядит несколько неестественно, рассмотренный вариант с его плавным изменением, тем не менее, привёл к графикам, не имеющим принципиальных отличий от рассмотренных.

Отметим это ещё раз явно: рассмотренные параметры Хаббла условно наблюдаемые, то есть, построены на основе вымышленных наблюдений без каких-либо космологических корректировок, без явного учёта времени в пути света от вспышек сверхновых.

На приведённых диаграммах мы видим, что в прошлом ускоренно двигавшиеся дальние сверхновые в наши дни видны более тусклыми. Действительно, их скорости соответствуют большей удалённости. Напротив, ещё более далёкие сверхновые видны более яркими, чем это следовало бы из стандартного закона Хаббла. Однако, на что следует обратить внимание, ближние сверхновые и галактики видны практически неразличимо одинаково яркими, независимо от их скорости в прошлом. Вывод об ускоренном расширении сделан на сопоставлении параметров движения дальних сверхновых с параметрами ближайших к нам. Бесспорно, что вплоть до наших дней Вселенная расширялась ускоренно. Но можно ли утверждать, что и ныне эта тенденция сохранена?

Мы умышленно сформировали такой закон изменения параметра Хаббла рис.11.5, на врезке, что с ним в наши дни Вселенная расширяется ускоренно. Несмотря на это, на рис.11.6 мы видим, что наблюдаемые параметры Хаббла для обоих Вселенных – ниспадающие, отличные от диаграмм на вставке рис.11.5, что формально следовало бы трактовать как замедленное расширение в обоих случаях.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика