Но пятый постулат — совсем другого рода. Он длинный и сложный, а утверждаемое в нем вовсе не столь самоочевидно. Его основное следствие состоит в существовании параллельных прямых — таких, которые никогда не пересекаются, но продолжаются без ограничения в одном и том же направлении, при этом всегда находясь на одном и том же расстоянии друг от друга, как два тротуара по сторонам бесконечно длинной, идеально прямой дороги. В действительности Эвклид формулирует требование, чтобы при пересечении двух линий третьей первые две пересекались с той стороны, где два образованных угла дают в сумме величину, меньшую двух прямых углов. Оказывается, что это предположение логически эквивалентно существованию в точности одной линии, параллельной заданной линии и проходящей через заданную точку вне этой линии.
Пятый постулат Эвклида.
В течение столетий пятый постулат рассматривался как позорное пятно — как нечто такое, что следует устранить путем вывода его из четырех других или же заменой его на нечто более простое и столь же самоочевидное, как и остальные постулаты. К девятнадцатому столетию математики поняли, что Эвклид был абсолютно прав, когда включил в свои предположения пятый постулат: им удалось доказать, что его нельзя вывести из остальных.
Для Эвклида логические доказательства составляли существенное свойство геометрии, и доказательство поныне остается фундаментом всей математики. Утверждение, у которого нет доказательства, воспринимается с подозрением вне зависимости от того, сколь много конкретных свидетельств говорит в его пользу и сколь важными могут оказаться его следствия. Физики, инженеры и астрономы, напротив, нередко относятся к доказательствам с пренебрежением — как к некоторому педантичному довеску, поскольку у них есть для него эффективная замена — наблюдение.
В качестве примера представим себе астронома, который пытается вычислить движение Луны. Он запишет математические уравнения, определяющие движение Луны, и тут же застрянет, поскольку не видно никакого способа решить эти уравнения точно. Тогда наш астроном может слегка схитрить, вводя в свои уравнения различные упрощающие приближения. Математика будет волновать вопрос, могут ли эти приближения серьезно повлиять на ответ, и он будет стремиться доказать, что с ними все в порядке. У астронома же есть иной способ проверить осмысленность своих действий. Он может посмотреть, действительно ли движение Луны таково, как следует из его вычислений. Если да, то этим одновременно обосновывается метод (поскольку получается правильный ответ) и проверяется теория (по той же причине). Замкнутого логического круга здесь нет, потому что если метод математически некорректен, то почти наверняка он не позволит правильно предсказать движение Луны
[6].Без доступа к роскоши наблюдений или экспериментов математикам приходится проверять свою работу, исходя из ее внутренней логики. Чем важнее следствия из некоторого утверждения, тем важнее убедиться, что это утверждение истинно. Так что доказательство становится даже еще важнее, когда всем хочется, чтобы данное утверждение было верным, или когда из его истинности будет вытекать огромный объем следствий.
Доказательства не могут висеть в воздухе, и их нельзя до бесконечности возводить к другим, логически им предшествующим. Где-то у них должно быть начало, и начало это по определению состоит из вещей, которые не доказываются и никогда не будут доказываться. Сегодня мы называем эти недоказываемые исходные предположения аксиомами. Для математической теории аксиомы представляют собой правила игры.
Всякий, кто возражает против аксиом, может при желании их изменить; однако результатом таких действий будет совсем другая история. Математика не утверждает, что некоторое утверждение
Следствия из аксиом Эвклида — длинная, тщательно отобранная цепочка логических построений — простираются необычайно далеко. Например, он доказывает — применяя логику, которая в его дни считалась безукоризненной, — что, коль скоро вы принимаете его аксиомы, вы неизбежно должны заключить следующее.
• Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов двух других его сторон.
• Существует бесконечно много простых чисел.
• Существуют иррациональные числа — такие, которые не выражаются в виде дроби. Примером является квадратный корень из двух.