Читаем Истина и красота. Всемирная история симметрии. полностью

Это был замечательный шаг вперед. Вместо того чтобы доказывать, что какой-то конкретный метод позволяет решить конкретную задачу, математики научились доказывать противоположное, причем в очень сильной форме: никакой метод из такого-то класса не способен решить такую-то задачу. Математики начали постигать внутренние ограничения, присущие их предмету. Здесь особенно зачаровывает дополнительный штрих, состоящий в том, что, даже утверждая наличие подобных ограничений, математики смогли доказать, что это в самом деленастоящие ограничения.


В надежде избежать неправильного понимания я хочу отметить ряд важных аспектов задачи о трисекции угла.

Требуется точноепостроение. Это очень жесткое условие в рамках идеализированной греческой формулировки геометрии, где линии считаются бесконечно тонкими, а точки — имеющими нулевой размер. Требуется разделить угол на три совершенно равные части. Равные не с точностью во столько-то десятичных знаков, будь то сотня или миллиард, — построение должно иметь бесконечнуюточность. В том же духе, правда, нам разрешается с бесконечной точностью помещать циркуль в любую точку, которая нам задана или которая возникла в процессе построения; раствор циркуля можно с бесконечной точностью задавать равным расстоянию между любыми двумя такими точками; кроме того, можно проводить прямую линию, проходящую точно через любые две такие точки.

В нашей менее совершенной реальности все не так. Так бесполезна ли геометрия Эвклида в нашем реальном мире? Нет. Например, если вы действуете так, как предписывает Эвклид в Предложении 9, имея реальный циркуль и реальный лист бумаги, то вы получите очень неплохую биссектрису. До появления компьютерной графики чертежники именно так и делили на чертежах угол на две части. Идеализация — не недостаток; она представляет собой основную причину, по которой математика вообще работает. В рамках идеализированной модели можно рассуждать логически, потому что точно известны свойства всех участвующих в ней объектов. Реальный мир с его элементами хаоса не таков.

Однако и идеализация имеет свои пределы, из-за которых модель может иногда стать непригодной. Бесконечно тонкие линии, например, не очень хороши в качестве разметки на дорогах [8]. Модель следует приспособить к соответствующему контексту. Модель Эвклида была приспособлена таким образом, чтобы облегчить вывод логических зависимостей между геометрическими утверждениями. В качестве бонуса она может быть полезна для понимания реального мира, хотя это ни в коей мере не занимало центрального места в рассуждениях Эвклида.

Следующее замечание связано с предыдущим, но идет в несколько ином направлении. Не составляет труда найти построения для приближенной трисекции углов. Если вам требуется точность в один процент или в одну тысячную процента, этого можно добиться. Когда ошибка составляет тысячную долю толщины линии, которую проводит ваш карандаш, она и в самом деле не слишком важна для технических чертежей. Математическая же задача ставится об идеальной трисекции. Можно ли произвольный угол точноразбить на три части? И ответ здесь — нет.

Иногда говорят, что «нельзя доказать отрицание». Математики знают, что такое утверждение — чушь. Более того, отрицание может обладать собственным очарованием, в особенности когда для доказательства невозможности чего-либо требуются новые методы. Такие методы часто оказываются более мощными и более интересными, чем положительные решения. Когда кто-то изобрел новый мощный метод, позволяющий характеризовать вещи, которые можно построить циркулем и линейкой, а также отделил их от тех, построить которые таким образом нельзя, возникает совершенно новый способ мышления. А за ним приходят новые идеи, новые задачи, новые решения — и новые математические теории и инструменты.

Нельзя использовать инструменты, которые нельзя построить. Вам не удастся позвонить другу по мобильному телефону, если мобильных телефонов не существует. Или съесть суфле из шпината, если никто не изобрел сельского хозяйства или не придумал, как пользоваться огнем. Так что создание инструментов может оказаться не менее важным, чем решение задач.


Возможность деления углов на равные части тесно связана кое с чем более милым — с построением правильных многоугольников.

Многоугольник — это замкнутая фигура, образованная отрезками прямых линий. Треугольники, квадраты, прямоугольники, ромбы типа такого — все они многоугольники. Окружность не есть многоугольник, потому что ее «сторона» представляет собой кривую, а не некоторое число отрезков. Многоугольник называется правильным, если все его стороны имеют одну и ту же длину, а каждая пара соседних сторон пересекается под одним и тем же углом. На рисунке приведены правильные многоугольники с числом сторон 3, 4, 5, 6, 7 и 8.

Правильные многоугольники.

Перейти на страницу:

Все книги серии Элементы

Мозг и душа. Как нервная деятельность формирует наш внутренний мир
Мозг и душа. Как нервная деятельность формирует наш внутренний мир

Знаменитый британский нейрофизиолог Крис Фрит хорошо известен умением говорить просто об очень сложных проблемах психологии – таких как психическая деятельность, социальное поведение, аутизм и шизофрения. Именно в этой сфере, наряду с изучением того, как мы воспринимаем окружающий мир, действуем, делаем выбор, помним и чувствуем, сегодня и происходит научная революция, связанная с внедрением методов нейровизуализации. В книге "Мозг и душа" Крис Фрит рассказывает обо всем этом самым доступным и занимательным образом.УДК 159.9:616.89ББК 88.3+56.14ISBN: 978-5-271-28988-0 (ООО "Издательство Астрель")© Chris D. Frith, 2007All Rights Reserved. Authorised translation from the English language edition published by Blackwell Publishing Limited. Responsibility for the accuracy of the translation rests solely with The Dynasty Foundation and is not the responsibility of John Blackwell Publishing Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, Blackwell Publishing Limited.© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2010© П. Петров, перевод на русский язык, 2010© А. Бондаренко, художественное оформление, макет, 2010© ООО "Издательство Астрель", 2010Издательство CORPUS ®Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Кристофер Фрит , Крис Фрит

Биология, биофизика, биохимия / Биология / Психология / Образование и наука
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Мутанты
Мутанты

Для того, чтобы посмотреть, как развивается зародыш, Клеопатра приказывала вспарывать животы беременным рабыням. Сегодня мы знаем о механизмах, которые заставляют одну-единственную клетку превращаться сначала в эмбрион, после – в ребенка, а затем и во взрослого человека, несравненно больше, чем во времена жестокой египтянки, однако многие вопросы по-прежнему остаются без ответов. Один из основных методов исследовать пути формирования человеческого тела – это проследить за возникающими в этом процессе сбоями или, как говорят ученые, мутациями. Именно об этих "неполадках", приводящих к появлению сиамских близнецов, двухголовых ягнят и прочих мутантов, рассказывает в своей увлекательной и порой шокирующей книге британский биолог Арман Мари Леруа. Используя истории знаменитых "уродцев" в качестве отправной точки для своих рассуждений, автор подводит читателя к пониманию сложных законов, позволяющих человеческим телу на протяжении многих поколений сохранять относительную стабильность, оставаясь при этом поразительно многообразным.УДК 575-2ББК 28.704ISBN 978-5-271-24665-4 (ООО "Издательство Астрель")© Armand Marie Leroi, 2003© Фонд Дмитрия Зимина "Династия", российское издание, 2009© Е. Година, перевод на русский язык, 2009© А. Бондаренко, оформление, 2009Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Арман Мари Леруа

Биология, биофизика, биохимия

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии