Читаем Истина и красота. Всемирная история симметрии. полностью

Первая половина книги может на беглый взгляд показаться вовсе не имеющей отношения к симметрии и лишь вскользь относящейся к реальному физическому миру. Причина в том, что в качестве доминирующей идеи симметрия появилась не так, как можно было бы этого ожидать, — т.е. не через геометрию. Вместо этого глубинно прекрасная и жизненно необходимая концепция симметрии, которой сегодня пользуются математики и физики, пришла к нам из алгебры. Поэтому значительная часть данной книги описывает поиск решений алгебраических уравнений. Может показаться, что это сугубо технический момент, однако в действительности это поистине захватывающее приключение, многие из ключевых участников которого прожили необычные и драматические жизни. Математики — живые люди, пусть даже иногда они теряются за своими абстрактными размышлениями. Некоторые из них могут позволить логике слишком сильно вмешиваться в их жизнь, но мы снова и снова будем убеждаться, что нашим героям не чуждо ничто человеческое. Мы увидим, как они жили и умирали, прочтем об их любовных историях и дуэлях, жестоких спорах из-за приоритета, сексуальных скандалах, пьянстве и болезнях, а по ходу дела увидим, как пробивали себе дорогу их математические идеи, изменявшие мир.

Начиная с десятого столетия до Рождества Христова и вплоть до кульминации в начале XIX века, связанной с фигурой Галуа, повествование шаг за шагом поведет нас по пути завоевания уравнений — дороге, которая в конце концов зашла в тупик, когда математики попытались победить так называемую «квинтику» — уравнение, в которое входит пятая степень неизвестного. Перестали ли их методы работать из-за того, что в уравнении пятой степени крылись какие-то фундаментальные отличия? Или же можно было найти похожие, но более мощные методы, с помощью которых удалось бы получить формулы для его решения? Застряли ли математики из-за того, что встретили настоящую преграду, или им просто отказала сообразительность?

Важно понимать, что факт существования решений уравнений пятой степени был достоверно установлен. Вопрос состоял в том, всегда ли их можно представить алгебраической формулой. В 1821 году молодой норвежец Нильс Хенрик Абель доказал, что уравнение пятой степени нельзя решить алгебраическими средствами. Его доказательство, однако, было несколько таинственным и довольно непрямым. Он доказал, что никакого общего решения быть не может, но при этом оставалось непонятно почему.

Именно Галуа открыл, что невозможность решения уравнения пятой степени вытекает из симметрий этого уравнения. Если эти симметрии проходят, так сказать, тест Галуа (это означает, что они устроены некоторым очень специальным образом, который я не буду объяснять прямо сейчас), то уравнение можно решить с помощью алгебраической формулы. Если симметрии не проходят тест Галуа, то никакой такой формулы нет.

Общее уравнение пятой степени нельзя решить с помощью формулы, потому что у него неправильные симметрии.


Это эпического масштаба открытие составляет второй сюжет данной книги — сюжет группы,т.е. математического «исчисления симметрий». Галуа перенял древнюю математическую традицию — алгебру — и развил ее, создав новый инструмент для изучения симметрии.

Пусть пока что слова вроде «группы» останутся необъясненным специальным жаргоном. Когда значение таких слов станет важным для нашего рассказа, я приведу все необходимые пояснения. Но иногда нам будет требоваться всего лишь подходящий термин, чтобы иметь ориентиры в нашем рассказе. Если вы наткнетесь на что-то в этом роде — на то, что выглядит как профессиональный жаргон, но непосредственно не объясняется, — отнеситесь к этому просто как к указателю на нечто полезное, чей конкретный смысл пока не играет большой роли. Иногда это значение будет проясняться по мере дальнейшего чтения. «Группа» — как раз такой случай, но мы поймем, что это такое, не раньше, чем дойдем до середины книги.

Наш рассказ также затрагивает вопрос о любопытной значимости в математике некоторых конкретных чисел. Я говорю сейчас не о фундаментальных физических постоянных, а о математических постоянных, таких как π(греческая буква пи). Скорость света, например, могла бы в принципе иметь любое значение, но так случилось, что в нашей вселенной она составляет 300 000 метров в секунду. С другой стороны, число πимеет значение, немногим большее, чем 3,14159, и ничто в мире не может его изменить.

Перейти на страницу:

Все книги серии Элементы

Мозг и душа. Как нервная деятельность формирует наш внутренний мир
Мозг и душа. Как нервная деятельность формирует наш внутренний мир

Знаменитый британский нейрофизиолог Крис Фрит хорошо известен умением говорить просто об очень сложных проблемах психологии – таких как психическая деятельность, социальное поведение, аутизм и шизофрения. Именно в этой сфере, наряду с изучением того, как мы воспринимаем окружающий мир, действуем, делаем выбор, помним и чувствуем, сегодня и происходит научная революция, связанная с внедрением методов нейровизуализации. В книге "Мозг и душа" Крис Фрит рассказывает обо всем этом самым доступным и занимательным образом.УДК 159.9:616.89ББК 88.3+56.14ISBN: 978-5-271-28988-0 (ООО "Издательство Астрель")© Chris D. Frith, 2007All Rights Reserved. Authorised translation from the English language edition published by Blackwell Publishing Limited. Responsibility for the accuracy of the translation rests solely with The Dynasty Foundation and is not the responsibility of John Blackwell Publishing Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, Blackwell Publishing Limited.© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2010© П. Петров, перевод на русский язык, 2010© А. Бондаренко, художественное оформление, макет, 2010© ООО "Издательство Астрель", 2010Издательство CORPUS ®Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Кристофер Фрит , Крис Фрит

Биология, биофизика, биохимия / Биология / Психология / Образование и наука
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Мутанты
Мутанты

Для того, чтобы посмотреть, как развивается зародыш, Клеопатра приказывала вспарывать животы беременным рабыням. Сегодня мы знаем о механизмах, которые заставляют одну-единственную клетку превращаться сначала в эмбрион, после – в ребенка, а затем и во взрослого человека, несравненно больше, чем во времена жестокой египтянки, однако многие вопросы по-прежнему остаются без ответов. Один из основных методов исследовать пути формирования человеческого тела – это проследить за возникающими в этом процессе сбоями или, как говорят ученые, мутациями. Именно об этих "неполадках", приводящих к появлению сиамских близнецов, двухголовых ягнят и прочих мутантов, рассказывает в своей увлекательной и порой шокирующей книге британский биолог Арман Мари Леруа. Используя истории знаменитых "уродцев" в качестве отправной точки для своих рассуждений, автор подводит читателя к пониманию сложных законов, позволяющих человеческим телу на протяжении многих поколений сохранять относительную стабильность, оставаясь при этом поразительно многообразным.УДК 575-2ББК 28.704ISBN 978-5-271-24665-4 (ООО "Издательство Астрель")© Armand Marie Leroi, 2003© Фонд Дмитрия Зимина "Династия", российское издание, 2009© Е. Година, перевод на русский язык, 2009© А. Бондаренко, оформление, 2009Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Арман Мари Леруа

Биология, биофизика, биохимия

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии