Читаем Истина и красота. Всемирная история симметрии. полностью

Неразрешимость уравнений пятой степени говорит нам, что, как и π, число 5 также довольно необычно. Это наименьшее число, для которого соответствующая группа симметрии не проходит тест Галуа. Другой занятный пример — это последовательность чисел 1, 2, 4, 8. Математики открыли серию расширений концепции обычных «вещественных» чисел — сначала строятся комплексные числа, а затем нечто, называемое кватернионами и, далее, октонионами. Они соответственно конструируются из двух экземпляров вещественных чисел, из четырех экземпляров и из восьми экземпляров. Кто же следующий? Естественная догадка — 16, но на самом деле дальнейших разумных расширений числовых систем нет. Это замечательный и глубокий факт. Он говорит нам, что число 8 — особенное, причем не в каком-нибудь поверхностном смысле, а в терминах глубинных структур самой математики.

Кроме чисел 5 и 8 в этой книге появятся некоторые другие, среди которых надо в первую очередь отметить 14, 52, 78, 133 и 248. Эти любопытные числа представляют собой размерности пяти «исключительных групп Ли», и их влияние пронизывает всю математику и значительную часть математической физики. Эти числа — главные действующие лица в математической драме, тогда как другие числа, с первого взгляда мало чем отличающиеся, — всего лишь статисты.

Математики открыли, насколько эти числа особенные, в конце девятнадцатого столетия, когда родилась современная абстрактная алгебра. Существенны не числа сами по себе, но роль, которую они играют в основаниях алгебры. С каждым из этих чисел связан математический объект, называемый группой Ли и обладающий уникальными и замечательными свойствами. Эти группы играют фундаментальную роль в современной физике, они связаны с глубокими структурами пространства, времени и материи.


Это и подводит нас к заключительному сюжету — фундаментальной физике. Физики давно задавались вопросом, почему пространство имеет три измерения, а время — одно; иными словами, почему мы живем в четырехмерном пространстве-времени? Теория суперструн — самая современная попытка объединить всю физику в единое целое, управляемое набором взаимосогласованных законов — привела физиков к вопросу, может ли пространство-время иметь дополнительные «скрытые» измерения. Идея может показаться бредовой, но у нее имеются неплохие исторические прецеденты. Из всех свойств теории суперструн присутствие дополнительных измерений вызывает, наверное, меньше всего возражений.

Куда больше вопросов вызывает другое свойство — вера в то, что формулировка новой теории пространства и времени зависит главным образом от той математики, на которой основаны теория относительности и квантовая теория — два столпа, на которых покоится современная физика. Объединение этих взаимно противоречащих теорий воспринимается как математическое упражнение, а не как процесс, требующий новых революционных экспериментов. Ожидается, что математическая красота сыграет роль необходимого предварительного условия для физической истины. Это допущение может таить в себе опасность. Важно не потерять из виду физический мир, так что, какая бы теория в конце концов ни родилась из современных построений и какой бы замечательной ни была ее математическая родословная, она не освобождается от проверки экспериментами и наблюдениями.

Как бы то ни было, на данный момент имеются веские причины придерживаться математического подхода. Одна такая причина состоит в том, что до тех пор, пока по-настоящему убедительная объединенная теория не сформулирована, никто не знает, какие эксперименты осуществлять. Другая причина в том, что математическая симметрия играет фундаментальную роль как в теории относительности, так и в квантовой теории — в двух областях, демонстрирующих значительный дефицит взаимно согласованных позиций, — так что особую ценность приобретают любые, пусть даже совсем небольшие области, в которых такой согласованности удается добиться. Возможные структуры пространства, времени и материи определяются своими симметриями, и некоторые из наиболее важных возможностей могут быть связаны с исключительными структурами в алгебре. Может быть, пространство-время обладает теми свойствами, которые мы наблюдаем, потому что математика допускает к участию в финальном туре только небольшое число специальных форм. Если так, то вполне разумно прислушиваться к тому, что говорит математика.

Почему вселенная выглядит столь математической? На этот вопрос предлагались разнообразные ответы, но ни один из них не кажется мне достаточно убедительным. Отношения симметрии между математическими идеями и физическим миром, равно как и симметрия между нашим чувством красоты и наиболее глубокими и важными математическими формами, представляют собой глубокую и, быть может, неразрешимую загадку. Никто из нас не знает, почемукрасота есть истина, а истина — красота. Все, что нам остается, — это созерцать бесконечное разнообразие их взаимоотношений.

Глава 1

Вавилонские писцы

Перейти на страницу:

Все книги серии Элементы

Мозг и душа. Как нервная деятельность формирует наш внутренний мир
Мозг и душа. Как нервная деятельность формирует наш внутренний мир

Знаменитый британский нейрофизиолог Крис Фрит хорошо известен умением говорить просто об очень сложных проблемах психологии – таких как психическая деятельность, социальное поведение, аутизм и шизофрения. Именно в этой сфере, наряду с изучением того, как мы воспринимаем окружающий мир, действуем, делаем выбор, помним и чувствуем, сегодня и происходит научная революция, связанная с внедрением методов нейровизуализации. В книге "Мозг и душа" Крис Фрит рассказывает обо всем этом самым доступным и занимательным образом.УДК 159.9:616.89ББК 88.3+56.14ISBN: 978-5-271-28988-0 (ООО "Издательство Астрель")© Chris D. Frith, 2007All Rights Reserved. Authorised translation from the English language edition published by Blackwell Publishing Limited. Responsibility for the accuracy of the translation rests solely with The Dynasty Foundation and is not the responsibility of John Blackwell Publishing Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, Blackwell Publishing Limited.© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2010© П. Петров, перевод на русский язык, 2010© А. Бондаренко, художественное оформление, макет, 2010© ООО "Издательство Астрель", 2010Издательство CORPUS ®Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Кристофер Фрит , Крис Фрит

Биология, биофизика, биохимия / Биология / Психология / Образование и наука
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Мутанты
Мутанты

Для того, чтобы посмотреть, как развивается зародыш, Клеопатра приказывала вспарывать животы беременным рабыням. Сегодня мы знаем о механизмах, которые заставляют одну-единственную клетку превращаться сначала в эмбрион, после – в ребенка, а затем и во взрослого человека, несравненно больше, чем во времена жестокой египтянки, однако многие вопросы по-прежнему остаются без ответов. Один из основных методов исследовать пути формирования человеческого тела – это проследить за возникающими в этом процессе сбоями или, как говорят ученые, мутациями. Именно об этих "неполадках", приводящих к появлению сиамских близнецов, двухголовых ягнят и прочих мутантов, рассказывает в своей увлекательной и порой шокирующей книге британский биолог Арман Мари Леруа. Используя истории знаменитых "уродцев" в качестве отправной точки для своих рассуждений, автор подводит читателя к пониманию сложных законов, позволяющих человеческим телу на протяжении многих поколений сохранять относительную стабильность, оставаясь при этом поразительно многообразным.УДК 575-2ББК 28.704ISBN 978-5-271-24665-4 (ООО "Издательство Астрель")© Armand Marie Leroi, 2003© Фонд Дмитрия Зимина "Династия", российское издание, 2009© Е. Година, перевод на русский язык, 2009© А. Бондаренко, оформление, 2009Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Арман Мари Леруа

Биология, биофизика, биохимия

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии