Читаем Истина и красота. Всемирная история симметрии. полностью

куб + квадрат = сторона.

Причина в том, что в этих случаях можно разделить обе части уравнения на неизвестное, в результате чего уравнение сведется к квадратному.


Омар изобрел свои решения не полностью самостоятельно, а основываясь на предшествующих греческих методах решения различных типов кубических уравнений с использованием конических сечений. Он систематически развил эти идеи и решил такими методами все четырнадцать типов кубических уравнений. Предшествующие математики, как он заметил, нашли решения в ряде случаев, но все их методы были очень специальными и каждый случай требовал отдельного построения; до Омара никто не изучал весь охват возможных случаев, не говоря уж о том, чтобы дать их решения. «Я же, напротив, никогда не ослабевал в своем желании сделать известными, притом со всей точностью, все возможные случаи и в каждом из них провести различие между возможным и невозможным». Под «невозможным» он понимал отсутствие положительного решения. Чтобы получить представление о его работе, приведем его решение случая «куб, некоторые стороны и некоторые числа равны некоторым квадратам», что мы бы записали как

x3+ bx + c = ax2.

(Поскольку нас не заботит положительность или отрицательность, мы бы, скорее всего, перенесли член из правой части в левую с изменением знака; получив таким образом уравнение x 3  − ax 2  + bx + c =0.)

Омар снабжает своих читателей инструкциями, состоящими в следующей последовательности шагов. (1) Проводим три отрезка с длинами c/b, √bи aтак, чтобы образовался прямой угол. (2) Проводим полуокружность, диаметр которой — горизонтальный отрезок. Продолжаем вертикальные прямые до пересечения с ней. Если жирный вертикальный отрезок имеет длину d, добиваемся, чтобы отрезок жирной горизонтальной прямой имел длину cd/√b. (3) Проводим гиперболу (сплошная линия), асимптоты которой (те специальные прямые, к которым приближается гипербола) — серые прямые, проходящие через только что построенную точку. (4) Находим, где гипербола пересекает полуокружность. Тогда длины двух жирных отрезков, обозначенные как x, дают два (положительных) решения кубического уравнения.

Данное Омаром Хайямом решение кубического уравнения.

Подробности, как всегда, не так важны, как общий стиль. Выполняем ряд эвклидовых построений циркулем и линейкой, потом прибегаем к помощи гиперболы, потом еще немного эвклидовых построений — и готово.

Омар дает аналогичные конструкции для решения каждого из своих четырнадцати случаев и доказывает, что решения верны. В его анализе есть несколько дыр: при некоторых значениях коэффициентов a, bи cтребуемые в его построении точки не существуют. В приведенном выше построении, например, гипербола может вообще не пересекать полуокружность. Но если отбросить эти придирки, он выполнил впечатляющую и очень систематическую работу.

Некоторые из образов в поэзии Омара являются математическими и, как представляется, содержат аллюзии на его собственные работы, в тоне возражений самому себе, который проходит через все его творчество:

Умом ощупал я все мирозданья звенья,Постиг высокие людской души паренья,И, несмотря на то, уверенно скажу:Нет состояния блаженней опьяненья.

Одно особенно впечатляющее четверостишие звучит так:

Кто мы? Куклы на нитках, а кукольщик наш — небосвод.Он в большом балагане своем представленье ведет.Он сейчас на ковре бытия нас попрыгать заставит,А потом в свой сундук одного за другим уберет.

Это напоминает знаменитую платоновскую аллегорию теней на стене пещеры и подходит равным образом для описания и символьных вычислений в алгебре, и человеческой натуры. Омар был талантливым летописцем и того и другого.

Глава 4

Ученый игрок

«Клянусь святым Евангелием Господа нашего и как истинный человек чести не только никогда не публиковать ваши открытия, если вы мне доверите их, но да будет моя вера истинного христианина вам порукой, что я зашифрую их так, чтобы после моей смерти никто не смог их понять». Этот торжественный обет был, как говорят, дан в 1539 году.

Италия эпохи Возрождения была колыбелью нового, и математика не составляла исключения. В иконоборческом духе того времени математики Ренессанса задались целью преодолеть ограничения древней математики. Один из них разрешил загадку кубического уравнения и теперь обвинял другого в воровстве своего секрета.

Перейти на страницу:

Все книги серии Элементы

Мозг и душа. Как нервная деятельность формирует наш внутренний мир
Мозг и душа. Как нервная деятельность формирует наш внутренний мир

Знаменитый британский нейрофизиолог Крис Фрит хорошо известен умением говорить просто об очень сложных проблемах психологии – таких как психическая деятельность, социальное поведение, аутизм и шизофрения. Именно в этой сфере, наряду с изучением того, как мы воспринимаем окружающий мир, действуем, делаем выбор, помним и чувствуем, сегодня и происходит научная революция, связанная с внедрением методов нейровизуализации. В книге "Мозг и душа" Крис Фрит рассказывает обо всем этом самым доступным и занимательным образом.УДК 159.9:616.89ББК 88.3+56.14ISBN: 978-5-271-28988-0 (ООО "Издательство Астрель")© Chris D. Frith, 2007All Rights Reserved. Authorised translation from the English language edition published by Blackwell Publishing Limited. Responsibility for the accuracy of the translation rests solely with The Dynasty Foundation and is not the responsibility of John Blackwell Publishing Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, Blackwell Publishing Limited.© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2010© П. Петров, перевод на русский язык, 2010© А. Бондаренко, художественное оформление, макет, 2010© ООО "Издательство Астрель", 2010Издательство CORPUS ®Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Кристофер Фрит , Крис Фрит

Биология, биофизика, биохимия / Биология / Психология / Образование и наука
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Мутанты
Мутанты

Для того, чтобы посмотреть, как развивается зародыш, Клеопатра приказывала вспарывать животы беременным рабыням. Сегодня мы знаем о механизмах, которые заставляют одну-единственную клетку превращаться сначала в эмбрион, после – в ребенка, а затем и во взрослого человека, несравненно больше, чем во времена жестокой египтянки, однако многие вопросы по-прежнему остаются без ответов. Один из основных методов исследовать пути формирования человеческого тела – это проследить за возникающими в этом процессе сбоями или, как говорят ученые, мутациями. Именно об этих "неполадках", приводящих к появлению сиамских близнецов, двухголовых ягнят и прочих мутантов, рассказывает в своей увлекательной и порой шокирующей книге британский биолог Арман Мари Леруа. Используя истории знаменитых "уродцев" в качестве отправной точки для своих рассуждений, автор подводит читателя к пониманию сложных законов, позволяющих человеческим телу на протяжении многих поколений сохранять относительную стабильность, оставаясь при этом поразительно многообразным.УДК 575-2ББК 28.704ISBN 978-5-271-24665-4 (ООО "Издательство Астрель")© Armand Marie Leroi, 2003© Фонд Дмитрия Зимина "Династия", российское издание, 2009© Е. Година, перевод на русский язык, 2009© А. Бондаренко, оформление, 2009Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Арман Мари Леруа

Биология, биофизика, биохимия

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии