Результаты последовали впечатляющие, хотя и на довольно узком поприще. В пятилетнем возрасте Уильям свободно владел греческим, латынью и древнееврейским. К восьми годам он говорил по-французски и по-итальянски. Два года спустя к списку добавились арабский и санскрит; позднее — персидский, сирийский, хинди, малайский, маратхи и бенгальский. Попытка овладеть китайским провалилась из-за отсутствия подходящих текстов. Джеймс жаловался, что ему «стоило немалых денег поддерживать его из Лондона, но, похоже, деньги были потрачены не зря». Математик и квазиисторик Эрик Темпл Белл («квази», потому что он никогда не позволял неудобному факту испортить хорошую историю) вопрошал: «Для
Однако естественным наукам и математике повезло. Уильям, совсем уже было собравшийся посвятить свою жизнь изучению как можно большего числа существующих в мире языков, познакомился с американским вундеркиндом по имени Зира Колберн. Это был один из тех странных людей, чья голова работает как карманный калькулятор; он обладал способностью быстро и точно выполнять вычисления. Если бы вы спросили Колберна, чему равен кубический корень из 1 860 867, он ответил бы — 123, не моргнув глазом.
Такие способности — не то же самое, что склонность к математике, подобно тому как способность к грамотному письму не сделает из вас хорошего романиста. За исключением Гаусса, в записных книжках и рукописях которого остались многочисленные объемные вычисления, очень мало кто из великих математиков был выдающимся вычислителем. Большинство были просто толковыми вычислителями, каковыми в то время и требовалось быть, но в среднем не более выдающимися, чем обычный квалифицированный бухгалтер. Даже в наши дни компьютеры не полностью вытеснили вычисления ручкой на бумаге или в уме; часто можно получить хорошее представление о математической задаче, делая вычисления руками и следя за тем, как на бумаге выстраиваются символы. Но, разумеется, при наличии хорошей программы (по большей части созданной математиками) кто угодно сможет после часа тренировки проводить вычисления на уровне, которому возможности Колберна и в подметки не годятся.
И не думайте, что нечто подобное сделает вас хоть сколько-нибудь похожим на Гаусса.
Колберн не мог толком объяснить, какие приемы он использует, хотя и понимал, что немалую роль здесь играет память. Его познакомили с Гамильтоном в надежде, что юный гений прольет свет на эти таинственные приемы. Уильям так и сделал и даже предложил некоторые усовершенствования. Ко времени отъезда Колберна Гамильтон наконец нашел предмет достойный потрясающей мощи своего ума.
К семнадцати годам Гамильтон прочитал целый ряд трудов, написанных корифеями математики, и знал достаточно математической астрономии, чтобы вычислять затмения. Он по-прежнему проводил больше времени за «классическими» штудиями, чем за математикой, но все же именно математика стала его настоящей страстью. Вскоре он начал делать первые открытия. Гаусс открыл построение правильного 17-угольника, когда ему было 19 лет, а молодой Гамильтон совершил равно беспрецедентный прорыв, сформулировав аналогию — выражаясь математически, тождество — между механикой и оптикой, наукой о свете. Он впервые упомянул о своих идеях по этому поводу в зашифрованном письме к сестре Элизе, но нам вполне достоверно известно о характере этих идей из его последующего письма кузену Артуру.
Это было удивительное открытие. Механика — наука о движущихся телах: пушечные ядра летят по дуге параболы, маятники регулярным образом раскачиваются из стороны в сторону, планеты движутся по эллипсам вокруг Солнца. Оптика же представляет собой геометрию световых лучей, отражение и преломление, радуги, призмы и телескопические линзы. Связь между ними оказалась неожиданной; в то, что они представляют собой
Но тем не менее так оно и было. И это непосредственно привело к формализму, который в наши дни используется в математике и математической физике (не только в механике и оптике, но и в квантовой теории), — так называемому формализму гамильтоновых систем. Их основное свойство состоит в том, что уравнения движения механической системы выводятся из единой величины — полной энергии, ныне называемой