Ферма еще ранее обнаружил некоторые специальные случаи этого принципа, назвав его принципом наименьшего времени. Простейший пример, позволяющий объяснить его работу, — это отражение света от плоского зеркала. Левый рисунок показывает, как световой луч, выходя из одной точки и отражаясь от зеркала, достигает второй точки. Одним из великих открытии на заре оптики был закон отражения, который гласит, что две части светового луча составляют с зеркалом равные углы
[37].Как принцип наименьшего времени приводит к закону отражения.
Ферма придумал изящный прием: отразить в зеркале второй участок луча, а заодно и вторую точку, как показано на правом рисунке. Благодаря Эвклиду условие «равных углов» — это то же самое, что утверждение, что в этой «отраженной» картине путь от первой точки до второй является прямой линией. Но Эвклид доказал тот знаменитый факт, что прямая линия есть кратчайшее расстояние между двумя точками. Поскольку скорость света в воздухе постоянна, кратчайшее расстояние означает то же самое, что наименьшее время.
Возвращаясь к геометрии на левом рисунке, мы видим, что выполнено то же самое утверждение. Таким образом, условие равных углов логически эквивалентно тому факту, что световой луч выбирает путь с наименьшим временем распространения из первой точки во вторую при условии, что по дороге надо отразиться от зеркала.
Связанный с этим принцип — закон преломления Снеллиуса — говорит о том, как «ломается» луч при переходе из воздуха в воду и вообще из одной среды в другую. Этот закон можно вывести подобным же образом, если учесть, что свет распространяется в воде медленнее, чем в воздухе. Гамильтон пошел еще дальше, утверждая, что тот же принцип минимизации времени применим ко всем оптическим системам, и воплотив эту мысль в едином математическом объекте — характеристической функции.
Использованная здесь математика впечатляла, но в руках Гамильтона она привела к немедленной экспериментальной отдаче. Гамильтон заметил, что из его метода следовало существование «конического преломления», когда один луч света при попадании на подходящий кристалл выходит из него в виде целого конуса лучей. В 1832 году это предсказание, неожиданное для всех кто работал в оптике, получило прочное экспериментальное подтверждение, когда Хэмфри Ллойд использовал кристалл арагонита. На следующее утро Гамильтон проснулся знаменитым.
К 1830 году Гамильтон озаботился тем, чтобы обзавестись семьей; он подумывал жениться на Элен де Вер, умом которой как он говорил Вордсворту, он восхищался. Ей он тоже писал письма в стихах и был готов уже сделать предложение, когда она заявила ему, что никогда не уедет из своей родной деревни Карра
[38]. Он воспринял это как тактичный отказ — весьма вероятно, что обоснованно, поскольку через год она вышла за кого-то замуж и все же уехала.В конце концов он женился на Элен Бейли — местной девушке, жившей неподалеку от обсерватории. Гамильтон описывал ее как «далеко не блестящую». Медовый месяц был ужасен: Гамильтон занимался оптикой, а Элен болела. В 1834 году у них родился сын Уильям Эдвин. Затем Элен уехала на большую часть года. Второй сын Арчибальд Хенри появился на свет в 1835-м, но брак уже трещал по швам.
В глазах потомства величайшим открытием Гамильтона была сформулированная им оптико-механическая аналогия. Но сам он до самой смерти — причем с все возрастающим упорством — отдавал пальму первенства вещи совершенного другого сорта — кватернионам.
Кватернионы представляют собой некоторую алгебраическую структуру, находящуюся в близком родстве с комплексными числами. Гамильтон был убежден, что они содержат в себе ключ к глубочайшим областям физики, а на склоне жизни убедил себя, что в них содержится ключ буквально ко всему. История, похоже, не согласилась с этой оценкой, и в течение следующего столетия кватернионы медленно тускнели, пропадая из поля общественного интереса, превратившись в тихую заводь абстрактной алгебры без серьезных применений.
Совсем недавно, однако, кватернионы пережили возрождение. И даже если они никогда не займут того положения, которое прочил им Гамильтон, их чем дальше, тем больше рассматривают как значимый источник важных математических структур. Кватернионы оказались очень специальным явлением — как раз настолько специальным, насколько этого требуют современные физические теории.
Сразу после открытия кватернионы произвели мощный переворот в алгебре. Они нарушили одно из важных алгебраических правил. На протяжении периода в двадцать лет чуть ли не все правила алгебры нарушались одно за другим, что иногда приносило богатейшие плоды, но ничуть не реже приводило в бесплодные тупики. То, что математики середины 1850-х годов воспринимали как не подлежащие изменениям правила, оказалось просто набором удобных допущений, облегчавших жизнь алгебраистам, но не всегда отвечавших более глубоким потребностям самой математики.