Читаем Истина и красота. Всемирная история симметрии. полностью

В 1673 году английский математик Джон Валлис — родившийся в Эшфорде, примерно в пятнадцати милях от моего родного города в графстве Кент — добился фантастического продвижения. Он обнаружил, что простой способ представления мнимых чисел — и даже «комплексных» чисел, которые соединяют в себе вещественные и мнимые — состоит в том, чтобы использовать точки на плоскости. Первым шагом является ныне вполне привычная концепция вещественной «числовой прямой» — прямой линии, простирающейся до бесконечности в обоих направлениях, с отметкой о посередине, направо от которой уходят вдаль положительные вещественные числа, а налево — отрицательные.

Каждое вещественное число можно поместить на числовую прямую. Каждый следующий десятичный знак требует деления единицы длины на десять, затем на сто, тысячу и т.д. равных частей, но это не проблема. Положение чисел, подобных √2, можно указать с любой желаемой степенью точности — в данном случае где-то между 1 и 2, немного слева от 1,5. Число πживет немного справа от 3, и т.д.

Вещественная числовая прямая.

Но куда же отправить √−1? Места на вещественной числовой прямой для этого числа нет. Это число ни положительно, ни отрицательно, поэтому ему не место ни справа, ни слева от точки 0.

Валлис поместил его где-то еще. Он ввел вторую числовую прямую, чтобы разместить на ней мнимые числа, т.е. числа, кратные i, [41]и расположил ее под прямым углом к вещественной числовой прямой. Это был в буквальном смысле образец «широкого подхода к делу».

Две числовые прямые, вещественная и мнимая, должны пересекаться в точке 0. Совсем не сложно доказать, что если числа вообще имеют смысл, то 0 умножить на iдолжно равняться 0, так что начало отсчета на вещественной и мнимой прямых одно и то же.

Два экземпляра вещественной числовой прямой, расположенные под прямым углом.

Комплексная плоскость, согласно Валлису.

Комплексное число состоит из двух частей: одна вещественная, другая мнимая. Чтобы указать положение заданного числа на плоскости, Валлис предложил своим читателям отмерить вещественную часть вдоль горизонтальной «вещественной» прямой, а затем отмерить мнимую часть вдоль вертикального направления, то есть параллельно мнимой прямой.


Это предложение полностью решило вопрос о придании смысла мнимым и комплексным числам. Оно было простым, но эффективным — настоящей работой гения.

Оно было целиком и полностью проигнорировано.


Несмотря на отсутствие общественного признания, открытие Валлиса, должно быть, как-то просочилось в математическое сознание, поскольку математики бессознательно начали использовать образы, непосредственно связанные с основной идеей Валлиса: комплексные числа живут не на прямой, а на комплексной плоскости.

По мере того как математика становилась более разнообразной, математики переходили к вычислению все более сложных вещей. В 1702 году Иоганн Бернулли, решая некоторую задачу из анализа, столкнулся с проблемой вычисления логарифма комплексного числа. К 1712 году Бернулли и Лейбниц воевали по поводу следующего ключевого вопроса: чем является логарифм отрицательного числа? Если бы этот вопрос удалось решить, можно было бы найти логарифм любого комплексного числа, потому что логарифм квадратного корня из заданного числа равен просто половине его логарифма. Таким образом, логарифм числа iсоставляет половину логарифма числа −1. Но чему равен логарифм −1? Вопрос стоял просто. Лейбниц полагал, что логарифм числа −1 должен быть комплексным. Бернулли говорил, что вещественным. Бернулли основывал свое заключение на несложных выкладках из математического анализа; Лейбниц возражал, что ни сам метод, ни полученный ответ не имеют смысла. В 1749 году Эйлер разрешил это противоречие, всецело встав на сторону Лейбница. Бернулли, по его наблюдению, упустил кое-что из виду. Его выкладки из анализа носили такой характер, что ответ включал в себя добавление «произвольной постоянной». Полностью сосредоточившись на комплексном анализе, Бернулли молчаливо предполагал, что эта постоянная равнялась нулю. А она нулю не равнялась. Она была мнимой. Это упущение объясняло расхождение между ответами Бернулли и Лейбница.

Темпы «комплексификации» математики нарастали. Все больше идей, появившихся при изучении вещественных чисел, распространялись на комплексные числа. В 1797 году норвежец по имени Каспар Вессель опубликовал метод представления комплексных чисел точками на плоскости.

Каспар происходил из семьи священника и был шестым из четырнадцати детей. В то время в самой Норвегии университетов не было, но она находилась в унии с Данией, так что в 1761 году он отправился в Копенгагенский университет. Он и его брат Оле изучали право, причем Оле, чтобы пополнить семейный бюджет, подрабатывал землемером. Позднее Каспар стал помощником Оле.

Перейти на страницу:

Все книги серии Элементы

Мозг и душа. Как нервная деятельность формирует наш внутренний мир
Мозг и душа. Как нервная деятельность формирует наш внутренний мир

Знаменитый британский нейрофизиолог Крис Фрит хорошо известен умением говорить просто об очень сложных проблемах психологии – таких как психическая деятельность, социальное поведение, аутизм и шизофрения. Именно в этой сфере, наряду с изучением того, как мы воспринимаем окружающий мир, действуем, делаем выбор, помним и чувствуем, сегодня и происходит научная революция, связанная с внедрением методов нейровизуализации. В книге "Мозг и душа" Крис Фрит рассказывает обо всем этом самым доступным и занимательным образом.УДК 159.9:616.89ББК 88.3+56.14ISBN: 978-5-271-28988-0 (ООО "Издательство Астрель")© Chris D. Frith, 2007All Rights Reserved. Authorised translation from the English language edition published by Blackwell Publishing Limited. Responsibility for the accuracy of the translation rests solely with The Dynasty Foundation and is not the responsibility of John Blackwell Publishing Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, Blackwell Publishing Limited.© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2010© П. Петров, перевод на русский язык, 2010© А. Бондаренко, художественное оформление, макет, 2010© ООО "Издательство Астрель", 2010Издательство CORPUS ®Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Кристофер Фрит , Крис Фрит

Биология, биофизика, биохимия / Биология / Психология / Образование и наука
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Мутанты
Мутанты

Для того, чтобы посмотреть, как развивается зародыш, Клеопатра приказывала вспарывать животы беременным рабыням. Сегодня мы знаем о механизмах, которые заставляют одну-единственную клетку превращаться сначала в эмбрион, после – в ребенка, а затем и во взрослого человека, несравненно больше, чем во времена жестокой египтянки, однако многие вопросы по-прежнему остаются без ответов. Один из основных методов исследовать пути формирования человеческого тела – это проследить за возникающими в этом процессе сбоями или, как говорят ученые, мутациями. Именно об этих "неполадках", приводящих к появлению сиамских близнецов, двухголовых ягнят и прочих мутантов, рассказывает в своей увлекательной и порой шокирующей книге британский биолог Арман Мари Леруа. Используя истории знаменитых "уродцев" в качестве отправной точки для своих рассуждений, автор подводит читателя к пониманию сложных законов, позволяющих человеческим телу на протяжении многих поколений сохранять относительную стабильность, оставаясь при этом поразительно многообразным.УДК 575-2ББК 28.704ISBN 978-5-271-24665-4 (ООО "Издательство Астрель")© Armand Marie Leroi, 2003© Фонд Дмитрия Зимина "Династия", российское издание, 2009© Е. Година, перевод на русский язык, 2009© А. Бондаренко, оформление, 2009Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Арман Мари Леруа

Биология, биофизика, биохимия

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии